https://www.selleckchem.com/products/kpt-8602.html A successful pregnancy requires that the maternal immune system recognizes and tolerates the semi-allogeneic fetus without compromising the capability of protecting both mother and fetus from various pathogens. Decidual macrophages present unique phenotypes to play a key role in the establishment of the immunological aspects of maternal-fetal interaction. Dysfunction of decidual macrophages gives rise to pregnancy complications such as preeclampsia, recurrent spontaneous miscarriage, preterm labor and fetal growth restriction. Here, we reviewed the latest knowledge on the origin, differentiation, unique phenotype and function of macrophages in normal pregnancy and in pregnancy complications. We mainly focused on the significant roles of decidual macrophages in the process of extravillous trophoblast invasion, spiral arterial remodeling, decidual stromal cells cultivation and immune tolerance maintenance in normal pregnancy, and their pathological roles in pregnancy-related complications, offering more integrated information in maternal-fetal immunity.Mutations in the genes encoding isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) are key drivers of diverse cancers, including gliomas and hematological malignancies. IDH mutations cause neomorphic enzymatic activity that results in the production of the oncometabolite 2-hydroxyglutarate (2-HG). In addition to 2-HG's well-known effects on tumor cells themselves, it has become increasingly clear that 2-HG directly influences the tumor microenvironment (TME). In particular, the non-cell-autonomous impact of 2-HG on the immune system likely plays a major role in shaping disease development and response to therapy. It is therefore critical to understand how IDH mutations affect the metabolism, epigenetics, and functions of tumor-infiltrating immune cells. Such knowledge may point towards new therapeutic approaches to treat IDH-mutant cancers.Antimicrobial resistance has sprea