https://www.selleckchem.com/ferroptosis.html This paper expatiates the stability and bifurcation for a fractional-order neural network (FONN) with double leakage delays. Firstly, the characteristic equation of the developed FONN is circumspectly researched by employing inequable delays as bifurcation parameters. Simultaneously the bifurcation criteria are correspondingly extrapolated. Then, unequal delays-spurred-bifurcation diagrams are primarily delineated to confirm the precision and correctness for the values of bifurcation points. Furthermore, it lavishly illustrates from the evidence that the stability performance of the proposed FONN can be demolished with the presence of leakage delays in accordance with comparative studies. Eventually, two numerical examples are exploited to underpin the feasibility of the developed theory. The results derived in this paper have perfected the retrievable outcomes on bifurcations of FONNs embodying unique leakage delay, which can nicely serve a benchmark deliberation and provide a comparatively credible guidance for the influence of multiple leakage delays on bifurcations of FONNs.The current state-of-the-art object recognition algorithms, deep convolutional neural networks (DCNNs), are inspired by the architecture of the mammalian visual system, and are capable of human-level performance on many tasks. As they are trained for object recognition tasks, it has been shown that DCNNs develop hidden representations that resemble those observed in the mammalian visual system (Razavi and Kriegeskorte, 2014; Yamins and Dicarlo, 2016; Gu and van Gerven, 2015; Mcclure and Kriegeskorte, 2016). Moreover, DCNNs trained on object recognition tasks are currently among the best models we have of the mammalian visual system. This led us to hypothesize that teaching DCNNs to achieve even more brain-like representations could improve their performance. To test this, we trained DCNNs on a composite task, wherein networks were trained to (a) cl