https://www.selleckchem.com/products/bal-0028.html Homozygous familial hypercholesterolemia (HoFH) is a rare, life-threatening genetic disorder characterized by an extremely elevated serum level of low-density lipoprotein cholesterol (LDL-C) and accelerated premature atherosclerotic cardiovascular diseases (ASCVD). However, the detailed mechanism of how the pathogenic mutations of HoFH trigger the acceleration of ASCVD is not well understood. Therefore, we performed high-throughput RNA and small RNA sequencing on the peripheral blood RNA samples of six HoFH patients and three healthy controls. The gene and miRNA expression differences were analyzed, and seven miRNAs and six corresponding genes were screened out through regulatory network analysis. Validation through quantitative PCR of genes and miRNAs from 52 HoFH patients and 20 healthy controls revealed that the expression levels of hsa-miR-486-3p, hsa-miR-941, and BIRC5 were significantly upregulated in HoFH, while ID1, PLA2G4C, and CACNA2D2 were downregulated. Spearman correlation analysis found that the levels of ID1, hsa-miR-941, and hsa-miR-486-3p were significantly correlated with additional ASCVD risk factors in HoFH patients. This study represents the first integrated analysis of transcriptome and miRNA expression profiles in patients with HoFH, a rare disease, and as a result, six differentially expressed miRNAs/genes that may be related to atherosclerosis in HoFH are reported. The miRNA-mRNA regulatory network may be the critical regulation mechanism by which ASCVD is accelerated in HoFH.Both SETD2-mediated H3K36me3 and miRNAs play critical epigenetic roles in inflammatory bowel disease (IBD) and involve in the dysfunctional intestinal barrier. However, little is known about cross-talk between these two types of regulators in IBD progression. We performed small RNA sequencing of Setd2 epithelium-specific knockout mice (Setd2Vil-KO) and wild-type controls, both with DSS-induced colitis, and designed a fr