https://www.selleckchem.com/products/ch5424802.html To monitor airborne nano-sized particles (NPs), a single-chip differential mobility particle sizer (DMPS) based on resonant micro cantilevers in defined micro-fluidic channels (µFCs) is introduced. A size bin of the positive-charged fraction of particles herein is separated from the air stream by aligning their trajectories onto the cantilever under the action of a perpendicular electrostatic field of variable strength. We use previously described µFCs and piezoresistive micro cantilevers (PMCs) of 16 ng mass fabricated using micro electro mechanical system (MEMS) technology, which offer a limit of detection of captured particle mass of 0.26 pg and a minimum detectable particulate mass concentration in air of 0.75 µg/m3. Mobility sizing in 4 bins of a nebulized carbon aerosol NPs is demonstrated based on finite element modelling (FEM) combined with a-priori knowledge of particle charge state. Good agreement of better than 14% of mass concentration is observed in a chamber test for the novel MEMS-DMPS vs. a simultaneously operated standard fast mobility particle sizer (FMPS) as reference instrument. Refreshing of polluted cantilevers is feasible without de-mounting the sensor chip from its package by multiply purging them alternately in acetone steam and clean air.The T-cell lymphomas are a rare group of Non-Hodgkin's lymphomas derived from mature T-lymphocytes. They are divided broadly into the Peripheral T-cell lymphomas and the Cutaneous T-cell lymphomas. Clinical outcomes vary widely but are generally unsatisfactory with current treatments. The development of an understanding of the various critical pathways in T-cell lymphogenesis and subsequent identification of therapeutic targets has led to a rapid expansion of the previously underwhelming T-cell lymphoma armament. This review aims to provide an up-to-date overview of the current state of targeted therapies in the T-cell lymphomas, including novel antibody-b