https://www.selleckchem.com/products/azd9291.html Compared with RVP group, patients receiving His-Purkinje system pacing showed improvement of LVEF (mean difference [MD], 5.65; 95% confidence interval [CI], 4.38-6.92), shorter chronic paced QRS duration (MD, - 39.29; 95% CI, - 41.90 to - 36.68), higher pacing threshold (MD, 0.8; 95% CI, 0.71-0.89) and lower risk of heart failure hospitalization (odds ratio [OR], 0.65; 95% CI, 0.44-0.96) during the follow-up. However, no statistical difference existed in LVEDV, LVESV and all-cause mortality between the two groups. CONCLUSION Our meta-analysis suggests that His-bundle pacing is more suitable for the treatment of patients with bradycardia and cardiac conduction dysfunction. © 2020 Wiley Periodicals, Inc.Advanced battery systems with high energy density have attracted enormous research enthusiasm with potential for portable electronics, electrical vehicles, and grid-scale systems. To enhance the performance of conversion-type batteries, various catalytic materials are developed, including metals and transition-metal dichalcogenides (TMDs). Metals are highly conductive with catalytic effects, but bulk structures with low surface area result in low atom utilization, and high chemical reactivity induces unfavorable dendrite effects. TMDs present chemical adsorption with active species and catalytic activity promotes conversion processes, suppressing shuttle effect and improving energy density. But they suffer from inferior conductivity compared with metal, and limited sites mainly concentrate on edges and defects. Single-atom materials with atomic sizes, good conductivity, and individual sites are promising candidates for advanced batteries because of a large atom utilization, unsaturated coordination, and unique electronic structure. Single-atom sites with high activity chemically trap intermediates to suppress shuttle effects and facilitate electron transfer and redox reactions for achieving high capacity, rate capabilit