Ras proteins are small GTPases that participate in multiple signal cascades, regulating crucial cellular processes including cell survival, proliferation, and differentiation. Mutations or deregulated activities of Ras are frequently the driving force for oncogenic transformation and tumorigenesis. Posttranslational modifications play a crucial role in mediating the stability, activity, or subcellular localization/trafficking of numerous cellular regulators including Ras proteins. A series of recent studies reveal that Ras proteins are also regulated by sumoylation. All three Ras protein isoforms (HRas, KRas, and NRas) are modified by SUMO3. The conserved lysine42 appears to be the primary site for mediating sumoylation. Expression of KRasV12/R42 mutants compromised the activation of the Raf/MEK/ERK signaling axis, leading to a reduced rate of cell migration and invasion in vitro in multiple cell lines. Moreover, treatment of transformed pancreatic cells with a SUMO E2 inhibitor blocks cell migration in a concentration-dependent manner, which is associated with a reduced level of both KRas sumoylation and expression of mesenchymal cell markers. Furthermore, mouse xenograft experiments reveal that expression of a SUMO-resistant mutant appears to suppress tumor development in vivo. Combined, these studies indicate that sumoylation functions as an important mechanism in mediating the roles of Ras in cell proliferation, differentiation, and malignant transformation and that the SUMO-modification system of Ras oncoproteins can be explored as a new druggable target for various human malignancies.Until to date, platinum derived drugs are still the backbone of treating ovarian cancer (OC). Most patients treated with platinum-based chemotherapy develop resistance during the course of their management. The treatment of platinum-resistant ovarian cancer (PROC) is challenging. Few therapeutic options are available for patients with this aggressive disease. Besides, there are liminal advances regarding new anticancer drugs as well as validated predictive biomarkers of clinical outcomes in this setting. The enrollment of PROC patients in interventional studies is limited as compared to newly launched clinical trials for platinum-sensitive OC. Enthusiastically, the emergence of antibody-drug conjugates (ADCs) has provided promising findings for further clinical development in PROC. ADCs have the advantage to selectively deliver cytotoxic drugs to cancer cells expressing several of antigens using specific monoclonal antibodies based on the concept of immune bioconjugation. This innovative class of therapeutics showed encouraging early signs of clinical efficacy in PROC particularly mirvetuximab soravtansine that has been successfully introduced into three randomized and controlled phase III studies. In this review, the evidence from clinical trials supporting the development of ADCs targeting folate receptor alpha, sodium-dependent phosphate transporter 2B, dipeptidase 3, mesothelin, mucin 16, and tissue factor using various cytotoxic payloads in PROC is reviewed.Gut microbes (GMs), dominated by bacteria, play important roles in many physiological processes. The structures and functions of GMs are closely related to human health, the occurrence and development of diseases and the rapid recovery of the body. Gastrointestinal cancers are the major diseases affecting human health worldwide. With the development of metagenomic technology and the wide application of new generation sequencing technology, a large number of studies suggest that complex GMs are related to the occurrence and development of gastrointestinal cancers. Fecal microbiota transplantation (FMT) and probiotics can treat and prevent the occurrence of gastrointestinal cancers. This article reviews the latest research progress of microbes in gastrointestinal cancers from the perspectives of the correlation, the influence mechanism and the application, so as to provide new directions for the prevention, early diagnosis and treatment of gastrointestinal cancers. To determine overall survival (OS), progression-free survival (PFS), and toxicity in patients with hepatocellular carcinoma (HCC) in a multicenter, real-world data registry using transarterial radioembolization (TARE) with resin microspheres. A total of 448 patients with HCC were treated at 36 centers between 2015 and 2019. Treatment history, baseline laboratory and imaging, and treatment goal were assessed. OS and PFS were stratified using Barcelona Clinic Liver Cancer (BCLC) and Child-Pugh (CP) classifications. Kaplan-Meier analyses compared OS and PFS with 95% confidence intervals. Transplants were tracked. Toxicities were assessed using Common Terminology Criteria for Adverse Events v5. Cox proportional hazard of baseline demographics assessed factors affecting survival. Prior chemoembolization and systemic therapy were used in 107 (26%) and 68 (16%) patients, respectively. Using the BCLC staging system, 66 patients (19%) were BCLC A and 202, 51, and 26 were BCLC B, C, and D, respectively. Median OSr studies in this multicenter registry.Following the previous findings reported by the present authors on the anthelmintic effect of hydro-ethanolic extract of Mentha pulegium, the volatile constituents of M. pulegium are now assessed in the present study by exploring its anthelmintic and its antioxidant proprieties using in vitro and in vivo assays. Egg hatch assay (EHA) and adult worm's motility assays (AWMA) were used to assess the in vitro activity against Haemonchus. contortus. The in vivo anthelmintic potential was evaluated in mice infected with Heligmosomoides polygyrus using faecal egg count reduction (FECR) and total worm count reduction (TWCR). M. pulegium EO demonstrated 100% inhibition in the EHA at 200 μg/mL (IC50 = 56.36 μg/mL). In the AWM assay, EO achieved total worms paralysis 6 h after treatment exposure. https://www.selleckchem.com/products/nutlin-3a.html This nematicidal effect was associated to morphological damages observed in the cuticular's worm using environmental scanning electron microscopy (ESEM). At 400 mg/kg, M. pulegium oil showed 75.66% of FECR and 80.23% of TWCR. The antioxidant potential of this plant was also monitored by several in vitro assays total antioxidant capacity was 205.