https://www.selleckchem.com/products/phenol-red-sodium-salt.html matics online. Supplementary data are available at Bioinformatics online. Analysis of epitope-specific antibody repertoires has provided novel insights into the pathogenesis of inflammatory disorders, especially allergies. A novel multiplex immunoassay, termed Bead-Based Epitope Assay (BBEA), was developed to quantify levels of epitope-specific immunoglobulins, including IgE, IgG, IgA and IgD isotypes. bbeaR is an open-source R package, developed for the BBEA, provides a framework to import, process and normalize .csv data files exported from the Luminex reader, evaluate various quality control metrics, analyze differential epitope-binding antibodies with linear modelling, visualize results, and map epitopes' amino acid sequences to their respective primary protein structures. bbeaR enables streamlined and reproducible analysis of epitope-specific antibody profiles. bbeaR is open-source and freely available from GitHub as an R package https//github.com/msuprun/bbeaR; vignettes included. Supplementary data are available at Bioinformatics online. Supplementary data are available at Bioinformatics online. High-throughput gene expression can be used to address a wide range of fundamental biological problems, but datasets of an appropriate size are often unavailable. Moreover, existing transcriptomics simulators have been criticised because they fail to emulate key properties of gene expression data. In this paper, we develop a method based on a conditional generative adversarial network to generate realistic transcriptomics data for E. coli and humans. We assess the performance of our approach across several tissues and cancer types. We show that our model preserves several gene expression properties significantly better than widely used simulators such as SynTReN or GeneNetWeaver. The synthetic data preserves tissue and cancer-specific properties of transcriptomics data. Moreover, it exhibits real gene cl