Virtual reality (VR) is a valuable experimental tool for studying human movement, including the analysis of interactions during locomotion tasks for developing crowd simulation algorithms. However, these studies are generally limited to distant interactions in crowds, due to the difficulty of rendering realistic sensations of collisions in VR. In this work, we explore the use of wearable haptics to render contacts during virtual crowd navigation. We focus on the behavioural changes occurring with or without haptic rendering during a navigation task in a dense crowd, as well as on potential after-effects introduced by the use haptic rendering. Our objective is to provide recommendations for designing VR setup to study crowd navigation behaviour. To this end, we designed an experiment (N=23) where participants navigated in a crowded virtual train station without, then with, and then again without haptic feedback of their collisions with virtual characters. Results show that providing haptic feedback improved the overall realism of the interaction, as participants more actively avoided collisions. We also noticed a significant after-effect in the users' behaviour when haptic rendering was once again disabled in the third part of the experiment. Nonetheless, haptic feedback did not have any significant impact on the users' sense of presence and embodiment.A critical challenge in using longitudinal neuroimaging data to study the progressions of Alzheimer's Disease (AD) is the varied number of missing records of the patients during the course when AD develops. To tackle this problem, in this paper we propose a novel formulation to learn an enriched representation with fixed length for imaging biomarkers, which aims to simultaneously capture the information conveyed by both baseline neuroimaging record and progressive variations characterized by varied counts of available follow-up records over time. Because the learned biomarker representations are a set of fixed-length vectors, they can be readily used by traditional machine learning models to study AD developments. Take into account that the missing brain scans are not aligned in terms of time in a studied cohort, we develop a new objective that maximizes the ratio of the summations of a number of l1 -norm distances for improved robustness, which, though, is difficult to efficiently solve in general. Thus, we derive a new efficient and non-greedy iterative solution algorithm and rigorously prove its convergence. We have performed extensive experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. A clear performance gain has been achieved in predicting ten different cognitive scores when we compare the original baseline biomarker representations against the learned representations with longitudinal enrichments. We further observe that the top selected biomarkers by our new method are in accordance with known knowledge in AD studies. These promising results have demonstrated improved performances of our new method that validate its effectiveness.With the growing influence of climate change, the intensity of flood disasters has significantly increased throughout the world over the past decades. Among the various types of hazards caused by floods, disruption of the road network has a particularly severe impact on the mobility of emergency responders, and therefore, poses a difficult challenge to damage mitigation, especially in the urban environment. The aim of this article is to present a mapping model for analyzing the spatial pattern of flood impact on urban mobility. Specifically, by incorporating the theory of space syntax, this model focuses on two dimensions of the analysis the performance of the road network and the relationship between the factors behind it. The former can demonstrate the extent to which the city is affected by flooding in terms of mobility, whereas the latter can provide valuable reference for enhancing the efficiency of evacuation and rescue operations.In this paper, we address the issue of data imbalance in learning deep models for visual object tracking. Although it is well known that data distribution plays a crucial role in learning and inference models, considerably less attention has been paid to data imbalance in visual tracking. To balance training data, we propose a novel shrinkage loss to penalize the importance of easy training data mostly coming from the background, which facilitates both deep regression and classification trackers to better distinguish target objects from the background. We extensively validate the proposed shrinkage loss function on six benchmark datasets, including the OTB-2013, OTB-2015, UAV-123, VOT-2016, VOT-2018, and LaSOT. https://www.selleckchem.com/products/VX-770.html Equipped with our shrinkage loss, the proposed one-stage deep regression tracker achieves favorable results against state-of-the-art methods, especially in comparison with DCFs trackers. Meanwhile, our shrinkage loss generalizes well to deep classification trackers. When replacing the original binary cross-entropy loss with our shrinkage loss, three representative baseline trackers achieve large performance gains, even setting new state-of-the-art results.Plasmodium sporozoites express circumsporozoite protein (CSP) on their surface, an essential protein that contains central repeating motifs. Antibodies targeting this region can neutralize infection, and the partial efficacy of RTS,S/AS01 - the leading malaria vaccine against P. falciparum (Pf) - has been associated with the humoral response against the repeats. Although structural details of antibody recognition of PfCSP have recently emerged, the molecular basis of antibody-mediated inhibition of other Plasmodium species via CSP binding remains unclear. Here, we analyze the structure and molecular interactions of potent monoclonal antibody (mAb) 3D11 binding to P. berghei CSP (PbCSP) using molecular dynamics simulations, X-ray crystallography, and cryoEM. We reveal that mAb 3D11 can accommodate all subtle variances of the PbCSP repeating motifs, and, upon binding, induces structural ordering of PbCSP through homotypic interactions. Together, our findings uncover common mechanisms of antibody evolution in mammals against the CSP repeats of Plasmodium sporozoites.