https://www.selleckchem.com/products/sodium-l-ascorbyl-2-phosphate.html Recently, it was shown that certain systems with large time-varying delay exhibit different types of chaos, which are related to two types of time-varying delay conservative and dissipative delays. The known high-dimensional turbulent chaos is characterized by strong fluctuations. In contrast, the recently discovered low-dimensional laminar chaos is characterized by nearly constant laminar phases with periodic durations and a chaotic variation of the intensity from phase to phase. In this paper we extend our results from our preceding publication [Hart, Roy, Müller-Bender, Otto, and Radons, Phys. Rev. Lett. 123, 154101 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.154101], where it is demonstrated that laminar chaos is a robust phenomenon, which can be observed in experimental systems. We provide a time series analysis toolbox for the detection of robust features of laminar chaos. We benchmark our toolbox by experimental time series and time series of a model system which is described by a nonlinear Langevin equation with time-varying delay. The benchmark is done for different noise strengths for both the experimental system and the model system, where laminar chaos can be detected, even if it is hard to distinguish from turbulent chaos by a visual analysis of the trajectory.A tensor variant of molecular-statistical theory is developed, within the framework of which it is possible to describe the appearance of spontaneous magnetization of anisotropic ferromagnetic nanoparticles dispersed in a nematic liquid crystal. Along with the tensor order parameters characterizing the orientational ordering of the liquid crystal and dispersed anisometric particles, the vector order parameter determining the magnetization of the ensemble of particles is additionally taken into account. A comparison between the previously known phenomenological theories of ferronematics and the proposed molecular-statistical t