Arylated building blocks or heterocycles are key to myriad applications, including pharmaceutical drug discovery, materials sciences, and many more. Herein, we have reported a mild and efficient strategy for generation of aryl radicals by reacting appropriate aryl hydrazines with catalytic iodine in open air. The aryl radicals were quenched by diversely substituted 1,4-napthoquinones present in the reaction mixture to afford diversely substituted 2,3-napthoquinones in moderate to excellent yield. Control experiments provided insights into the putative reaction mechanism. Copyright © 2020 American Chemical Society.An amino curing agent containing silicon/titanium flame-retardant elements (STCA) based on (3-aminopropyl)triethoxysilane (APTES) and tetrabutyl titanate was successfully prepared. The thermal decomposition and flame-retardant properties of a STCA-cured trifunctional epoxy resin, which was facilely synthesized by 1,1,1-tris(4-hydroxyphenyl)ethane and epichlorohydrin via a two-step method, were compared with those of another amino curing agent containing silicon (SCA) based on APTES and methyltrimethoxysilane. The structures of STCA and SCA were characterized by Fourier transform infrared (FT-IR), 29Si NMR, and Raman spectroscopies. The STCA-cured thermoset not only had good thermal stability with an initial decomposition temperature of 344.8 °C and a char yield of 52.7% at 800 °C but also exhibited the overall improvement of flame-retardant properties. V-0 rating was achieved using the UL-94 test, and the value of limiting oxygen index reached 33.8%. From the thermogravimetry-infrared test, the yield of pyrolysis products of the STCA-cured thermoset was significantly decreased, indicating the lower toxicity in contrast to the SCA-cured thermoset. Flame-retardant performances were also investigated using the cone calorimetry test, and the flame retardancy mechanism was studied using scanning electron microscopy, FT-IR, and energy-dispersive spectrometry. The results indicate that the introduction of silicon/titanium to the system reveals the synergistic effects to promote the formation of an intumescent, sufficient, and compact char layer during combustion, which could effectively prevent heat, oxygen, and flame from penetrating into the interior structure, and lead to the retardance of further combustion. Copyright © 2020 American Chemical Society.Thermodynamics and kinetics of pretilachlor adsorption on organobentonites modified with hexadecyltrimethyl ammonium chloride were investigated to reveal the structural effects of organobentonites on the interaction with pretilachlor and the diffusion of the herbicide and were related to the controlled release from organobentonites. The adsorption of pretilachlor was entropically driven by hydrophobic interaction. The entropy change dropped with increasing surfactant loading from 0.4 to 1.50 times the cation exchange capacity (CEC) of the bentonite used, corresponding to a decrease in the degree of freedom of pretilachlor molecules due to the enhanced order of surfactant in the interlayer. The kinetics of pretilachlor adsorption was well fitted to the pseudo-second-order model and related to the structural features of organobentonites. The enhanced packing density of the surfactant in the interlayer generally resulted in a reduction of the rate constant of the pretilachlor adsorption onto organobentonites. However, the stepwise increase in the basal spacing due to the surfactant arrangement transition, from lateral-monolayer to lateral-bilayer at a loading level of more than 0.8 × CEC, benefited the diffusion of pretilachlor and diminished the influence of the increase in surfactant packing density. The release of pretilachlor from organobentonites was predominated by Fickian diffusion, which could be understood from the adsorption thermodynamics and kinetics. The time taken for the release of 50% of active ingredient was 16-23 times that for the control formulation and exhibited a linear increase with the relative value of the equilibrium constant to the rate constant of pretilachlor adsorption. Copyright © 2020 American Chemical Society.Developing green 3D porous materials integrating multitasking environmental remediation with high efficiency and reusability is considered to be a promising sustainable approach and is urgently required. Herein, we have successfully prepared a facile, ecofriendly, and robust multifunctional composite sponge of carbon nitride (CN) nanosheets wrapping an elastomer polydimethylsiloxane (PDMS) skeleton without harsh treatments. The composite sponge (CN@PDMS) exhibits excellent hydrophobic and superoleophilic properties with a water contact angle of 133.2°. This sponge also shows high selective absorption of organic solvents and oils with high recyclability after 10 absorption cycles. Furthermore, the CN@PDMS sponge has a high ability for demulsification of the oil-in-water emulsion as well. The as-prepared sponge displays high thermal stability, retaining 82.16% of its original weight up to 550 °C, and extraordinary prolonged stability in harsh corrosive solutions over 35 h compared with the pristine PDMS sponge. Additionally, the CN@PDMS sponge exhibits a high ability for adsorption and photodegradation of rhodamine B under visible light irradiation with self-cleaning and high reusability over 5 runs. Such a sustainable strategy would provide new ways for broad environmental applications. Copyright © 2020 American Chemical Society.Synthetic cannabinoids (SCs) were developed to mimic the effects of Δ9-tetrahydrocannabinol on humans. SCs were distributed in the form of herbal blends, with smoking being the main method of consumption. These synthetic compounds have a wide range of physical, behavioral, and harmful effects on the body. However, this study aimed to identify and quantify three common SCs including AB-FUBINACA, AB-CHMINACA, and XLR-11 in the seized materials from the Jordanian market by gas chromatography coupled with mass spectrometry (GC-MS). A liquid-liquid extraction sample preparation technique was applied to 100 different seized samples obtained from the Anti-Narcotics Department of Public Security in a period between 2017 and 2018. Profiling of the seized samples revealed different distributions of the targeted SCs in the obtained samples. Upon quantitation, concentrations of these SCs varied greatly within and among the samples. https://www.selleckchem.com/products/rbn-2397.html The use of GC-MS analysis provided a powerful technique in the detection and identification of SCs.