https://www.selleckchem.com/products/drb18.html A detailed study for the synthesis of dinickel(II)-thiolate and dinickel(II)-hydrosulfide complexes and the complete characterization of the relevant intermediates involved in the C-S bond cleavage of thiolates are presented. Hydrated Ni(II) salts mediate the hydrolytic C-S bond cleavage of thiolates (NaSR/RSH; R = Me, Et, n Bu, t Bu), albeit inefficiently, to yield a mixture of a dinickel(II)-hydrosulfide complex, [Ni2(BPMP)(μ-SH)(DMF)2]2+ (1), and the corresponding dinickel(II)-thiolate complexes, such as [Ni2(BPMP)(μ-SEt)(ClO4)]1+ (2) (HBPMP is 2,6-bis[[bis(2-pyridylmethyl)amino]methyl]-4-methylphenol). A systematic study for the reactivity of thiolates with Ni(II) was therefore pursued which finally yielded 1 as a pure product which has been characterized in comparison with the dinickel(II)-dichloride complex, [Ni2(BPMP)(Cl)2(MeOH)2]1+ (3). While the reaction of thiolates with anhydrous Ni(OTf)2 in dry conditions could only yield [Ni2(BPMP)(OTf)2]1+ (5) instead of the expected dinickel(II)-thiolate compound, the C-S bond cleavage could be suppressed by the use of a chelating thiol, such as PhCOSH, to yield [Ni2(BPMP)(SCOPh)2]1+ (6). Finally, with the suitable choice of a monodentate thiol, a dinickel(II)-monothiolate complex, [Ni2(BPMP)(SPh)(DMF)(MeOH)(H2O)]2+ (7), was isolated as a pure product within 1 h of reaction, which after a longer time of reaction yielded 1 and PhOH. Complex 7 may thus be regarded as the intermediate that precedes the C-S bond cleavage and is generated by the reaction of a thiolate with an initially formed dinickel(II)-solvento complex, [Ni2(BPMP)(MeOH)2(H2O)2]3+(4). Selected dinickel(II) complexes were explored further for the scope of substitution reactions, and the results include the isolation of a dinickel(II)-bis(thiolate) complex, [Ni2(BPMP)(μ-SPh)2]1+ (8).A series of new phosphasalalen pro-ligands, analogues of salalen but with an iminophosphorane replacing the imine functionality,