Target detection in hyperspectral imagery (HSI) aims at extracting target components of interest from hundreds of narrow contiguous spectral bands, where the prior target information plays a vital role. However, the limitation of the previous methods is that only single-layer detection is carried out, which is not sufficient to discriminate the target parts from complex background spectra accurately. In this paper, we introduce a hierarchical structure to the traditional algorithm matched filter (MF). Because of the advantages of MF in target separation performance, that is, the background components are suppressed while preserving the targets, the detection result of MF is used to further suppress the background components in a cyclic iterative manner. In each iteration, the average output of the previous iteration is used as a suppression criterion to distinguish these pixels judged as backgrounds in the current iteration. To better stand out the target spectra from the background clutter, HSI spectral input and the given target spectrum are whitened and then used to construct the MF in the current iteration. Finally, we provide the corresponding proofs for the convergence of the output and suppression criterion. Experimental results on three classical hyperspectral datasets confirm that the proposed method performs better than some traditional and recently proposed methods.By comprehensively measuring changes in metabolites in the hippocampus of stress-loaded mice, we investigated the reasons for stress vulnerability and the effect of theanine, i.e., an abundant amino acid in tea leaves, on the metabolism. Stress sensitivity was higher in senescence-accelerated mouse prone 10 (SAMP10) mice than in normal ddY mice when these mice were loaded with stress on the basis of territorial consciousness in males. Group housing was used as the low-stress condition reference. Among the statistically altered metabolites, depression-related kynurenine and excitability-related histamine were significantly higher in SAMP10 mice than in ddY mice. In contrast, carnosine, which has antidepressant-like activity, and ornithine, which has antistress effects, were significantly lower in SAMP10 mice than in ddY mice. The ingestion of theanine, an excellent antistress amino acid, modulated the levels of kynurenine, histamine, and carnosine only in the stress-loaded SAMP10 mice and not in the group-housing mice. Depression-like behavior was suppressed in mice that had ingested theanine only under stress loading. Taken together, changes in these metabolites, such as kynurenine, histamine, carnosine, and ornithine, were suggested to be associated with the stress vulnerability and depression-like behavior of stressed SAMP10 mice. It was also shown that theanine action appears in the metabolism of mice only under stress loading.Many studies have examined the effect of situational strength (clarity, consistency, constraints, and consequences) on organisational behaviour, but little has been investigated about its health effects. This study aimed to analyse the relationship between situational strength and burnout. Specifically, we examined whether situational strength characteristics may be associated with burnout, whether these characteristics are risk (or protective) factors for burnout, and whether a strong situation is related to higher levels of burnout. Examining three samples from different occupations, it was found that clarity and consistency are negatively associated with burnout, being protective factors, while constraints are positively associated with burnout, being risk factors. These results are consistent across the samples. In addition to the direct effects, interaction effects between clarity and consistency in the office employee's sample (two-way interaction), between constraints and consequences in the samples of office employees and teachers (two-way interaction), and among clarity, consistency, and constraints in the salespeople's sample (three-way interaction) were also significant, explaining from 20% to 33% of the variance of burnout. We concluded that situational strength is associated not only with behaviour but also with health. The theoretical and practical implications of these findings are discussed.As a transdermal drug delivery technology, microneedle array (MNA) has the characteristics of painless, minimally invasive, and precise dosage. This work discusses and compares the new MNA mold prepared by our group using MEMS technology. https://www.selleckchem.com/products/repsox.html First, we introduced the planar pattern-to-cross-section technology (PCT) method using LIGA (Photolithography, Galvanogormung, Abformung) technology to obtain a three-dimensional structure similar to an X-ray mask pattern. On this basis, combined with polydimethylsiloxane (PDMS) transfer technology and electroplating process, metal MNA can be prepared. The second method is to use silicon wet etching combined with the SU-8 process to obtain a PDMS quadrangular pyramid MNA using PDMS transfer technology. Third method is to use the tilting rotary lithography process to obtain PDMS conical MNA on SU-8 photoresist through PDMS transfer technology. All three processes utilize parallel subtractive manufacturing methods, and the error range of reproducibility and accuracy is 2-11%. LIGA technology produces hollow MNA with an aspect ratio of up to 30, which is used for blood extraction and drug injection. The height of the MNA prepared by the engraving process is about 600 μm, which can achieve a sustained release effect together with a potential systemic delivery. The height of the MNA prepared by the ultraviolet exposure process is about 150 μm, which is used to stimulate the subcutaneous tissue.The development of synthetic lanthanide luminescent probes for selective sensing or binding anions in aqueous medium requires an understanding of how these anions interact with synthetic lanthanide probes. Synthetic lanthanide probes designed to differentiate anions in aqueous medium could underpin exciting new sensing tools for biomedical research and drug discovery. In this direction, we present three mononuclear lanthanide-based complexes, EuLCl3 (1), SmLCl3 (2), and TbLCl3 (3), incorporating a hexadentate aminomethylpiperidine-based nitrogen-rich heterocyclic ligand L for sensing anion and establishing mechanistic insight on their binding activities in aqueous medium. All these complexes are meticulously studied for their preferential selectivities towards different anions such as HPO42-, SO42-, CH3COO-, I-, Br-, Cl-, F-, NO3-, CO32-/HCO3-, and HSO4- at pH 7.4 in aqueous HEPES (2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid) buffer. Among the anions scanned, HPO42- showed an excellent luminescence change with all three complexes.