The atom-light hybrid interferometer recently attracted much attention in the research of precision metrology for its combination of light and atomic spin wave. With the AC Stark effect and proper design, it can be applied in the scheme of quantum non-demolition (QND) measurement of photon numbers. In this work, we apply the QND criteria to the scheme and theoretically derive its explicit formulas with various losses of the atomic-light hybrid interferometer. With the formulas and actual experiment parameters, we estimate and compare the performance of the vapor-atom-based and cold-atom-based hybrid interferometer in the QND measurement, analyze the influences of different kinds of losses, and provide optimized working parameter ranges of the interferometer.Fluorescence molecular tomography (FMT) emerges as a powerful non-invasive imaging tool with the ability to resolve fluorescence signals from sources located deep in living tissues. Yet, the accuracy of FMT reconstruction depends on the deviation of the assumed optical properties from the actual values. In this work, we improved the accuracy of the initial optical properties required for FMT using a new-generation time-domain (TD) near-infrared optical tomography (NIROT) system, which effectively decouples scattering and absorption coefficients. We proposed a multimodal paradigm combining TD-NIROT and continuous-wave (CW) FMT. Both numerical simulation and experiments were performed on a heterogeneous phantom containing a fluorescent inclusion. The results demonstrate significant improvement in the FMT reconstruction by taking the NIROT-derived optical properties as prior information. The multimodal method is attractive for preclinical studies and tumor diagnostics since both functional and molecular information can be obtained.A main challenge in x-ray µCT with laboratory radiation derives from the broad spectral content, which in contrast to monochromatic synchrotron radiation gives rise to reconstruction artifacts and impedes quantitative reconstruction. Due to the low spectral brightness of these sources, monochromatization is unfavorable and parallel recording of a broad bandpath is practically indispensable. While conventional CT sums up all spectral components into a single detector value, spectral CT discriminates the data in several spectral bins. Here we show that a new generation of charge integrating and interpolating pixel detectors is ideally suited to implement spectral CT with a resolution in the range of 10 µm. https://www.selleckchem.com/products/icfsp1.html We find that the information contained in several photon energy bins largely facilitates automated classification of materials, as demonstrated for of a mouse cochlea. Bones, soft tissues, background and metal implant materials are discriminated automatically. Importantly, this includes taking a better account of phase contrast effects, based on tailoring reconstruction parameters to specific energy bins.In this paper, we propose a fast calculation method using look-up table and wavefront-recording plane. Wavefront-recording plane method consists of two steps the first step is the calculation of a wavefront-recording plane which is placed between the object and the hologram. In the second step, we obtain the hologram by executing diffraction calculation from the wavefront-recording plane to the hologram plane. The first step of the previous wavefront-recording plane method is time consuming. In order to obtain further acceleration to the first step, we propose high compressed look-up table method based on wavefront-recording plane. We perform numerical simulations and optical experiments to verify the proposed method. Numerical simulation results show that the calculation time reduces dramatically in comparison with previous wavefront-recording plane method and the memory usage is very small. The optical experimental results are in accord with the numerical simulation results. It is expected that proposed method can greatly reduce the computational complexity and could be widely applied in the holographic field in the future.Focusing light through turbid media using wavefront shaping generally requires a noninvasive guide star to provide feedback on the focusing process. Here we report a photoacoustic guide star mechanism suitable for wavefront shaping through a scattering wall that is based on the fluctuations in the photoacoustic signals generated in a micro-vessel filled with flowing absorbers. The standard deviation of photoacoustic signals generated from random distributions of particles is dependent on the illumination volume and increases nonlinearly as the illumination volume is decreased. We harness this effect to guide wavefront shaping using the standard deviation of the photoacoustic response as the feedback signal. We further demonstrate sub-acoustic resolution optical focusing through a diffuser with a genetic algorithm optimization routine.When ultraviolet (UV) absorption spectroscopy technology is used for nitric oxide (NO) detection, the background noise will directly affect the accuracy of concentration inversion, especially in low concentrations. Traditional processing methods attempt to eliminate background noise, which damages the absorption spectrum characteristics. However, stochastic resonance (SR) can utilize the noise to extract a weak characteristic signal. This paper reports a monostable stochastic resonance (MSR) model for processing an UV NO absorption spectrum. By analyzing the characteristics of UV absorption spectrum of NO, the evaluation indexes were constructed, thereby an adaptive MSR method was designed for parameter optimization. The numerical simulation confirmed the absorbance peak can be amplified and spectral signal-to-noise ratio (SNR) can be in the stable range of the proposed method, when noise intensity increased. Finally, this experiment obtained a NO detection limit (3σ) of 1.456 ppm and the maximum relative deviation of concentration is 6.32% by this proposed method, which is satisfactory for processing of the UV NO absorption spectrum.Due to the weak birefringence of single mode fibers, solitons generated in fiber lasers are indeed vector pulses and exhibit periodic parameter change including polarization evolution even when there is a polarizer inside the cavity. Period doubling eigenstates of solitons generated in a fiber laser mode-locked by the nonlinear polarization rotation, i.e., period doubling of polarization components of the soliton, are numerically explored in detail. We found that, apart from the synchronous evolution between the two polarization components, there exists asynchronous development depending on the detailed operation conditions. In addition, period doubling of one polarization component together with period-one of another polarization component can be achieved. When the period tripling window is obtained, much complexed dynamics on the two polarization components could be observed.