Stroke is a leading cause of death, disability, and financial burden in the United States. Perhaps more than any other disease process, the rapidity with which the diagnosis and treatment of stroke are successfully achieved is paramount to the reduction of its associated morbidity and mortality. Steno-occlusive intracranial vascular disease, the most notorious culprit of cerebral ischemia and/or hemorrhage, traces its etiology to native and embolic atherosclerosis as well as various forms of vascular inflammation, insult, and dysfunction. Distinguishing between these causes is a critical first step in the diagnosis and treatment of a patient presenting with cerebrovascular compromise. In this chapter, we delineate the clinical and imaging features of cervical and intracranial atherosclerosis, vasculitis, and vasculopathy, along with the evidence behind the treatments which comprise their current-day standard of care. The modern imaging armamentarium is diverse and complex, with contrast-enhanced and non-contrast MR angiography, CT angiography, digital subtraction angiography, and ultrasound; each playing an important role in providing rapid insight into the patient's disease process. Understanding these imaging techniques and their application in the acute setting is critical for the provider caring for stroke patients.The venous anatomy of the brain, head, and neck is essential to endovascular diagnosis and therapy. This chapter provides an overview of the venous system.Hemorrhagic stroke comprises about 20% of all strokes, with intracerebral hemorrhage (ICH) being the most common type. Frequency of ICH is increased where hypertension is untreated. ICH in particularly has a disproportionately high risk of early mortality and long-term disability. Until recently, there has been a paucity of randomized controlled trials (RCTs) to provide evidence for the efficacy of various commonly considered interventions in ICH, including acute blood pressure management, coagulopathy reversal, and surgical hematoma evacuation. Evidence-based guidelines do exist for ICH and these form the basis for a framework of care. Current approaches emphasize control of extremely high blood pressure in the acute phase, rapid reversal of vitamin K antagonists, and surgical evacuation of cerebellar hemorrhage. Lingering questions, many of which are the topic of ongoing clinical research, include optimizing individual blood pressure targets, reversal strategies for newer anticoagulant medications, and the role of minimally invasive surgery. Risk stratification models exist, which derive from findings on clinical exam and neuroimaging, but care should be taken to avoid a self-fulfilling prophecy of poor outcome from limiting treatment due to a presumed poor prognosis. Cerebral venous thrombosis is an additional subtype of hemorrhagic stroke that has a unique set of causes, natural history, and treatment and is discussed as well.Endovascular therapy (EVT) has become the standard treatment for large-vessel occlusion (LVO) acute ischemic stroke (AIS). EVT is now indicated in patients up to 24h from their last known well, provided that the patient meets specific clinical and imaging criteria. Improvements in thrombectomy devices, techniques, and operator experience have allowed successful EVT of ICA terminus, M1-MCA occlusions as well as proximal M2-MCA, basilar artery occlusions, and revascularization of tandem lesions. Mechanical thrombectomy failures still occur due to several factors, however, highlighting the need for further device and technical improvements. An ongoing debate exists regarding the need for pre-EVT thrombolytic agents, thrombectomy techniques, distal occlusions, anesthesia methods, the role of advanced neuroimaging, the treatment of patients with larger infarct core, and those presenting with milder stroke symptoms. Many of these questions are the subject of current or upcoming clinical trials. This review aims to provide an outline and discussion about the established recommendations and emerging topics regarding EVT for LVO AIS.Dural arteriovenous fistulae (dAVFs) are diverse, complex lesions that share the common feature of arteriovenous shunting without an intervening nidus. In this chapter, the ensuing discussion is organized by dAVF location, followed by further consideration of less common, distinct types of dAVFs-carotid cavernous fistulae, pial arteriovenous fistulae, and vein of Galen malformations. For each lesion type, epidemiology, clinical presentation, imaging findings, classification considerations, and treatment options are discussed.Brain arteriovenous malformations are an important cause of intracerebral hemorrhage in the young. Ruptured AVM's are often treated, as the risk of rebleeding is high. The treatment of incidentally discovered, unruptured AVMs is controversial as the morbidity and mortality of treatment may exceed that of the AVM's natural history. Management is multimodal and includes observation with follow up, as well as microsurgical resection, endovascular embolization, and stereotactic radiosurgery. Multidisciplinary teams are important in evaluating patients for treatment. The goal of treatment is complete AVM obliteration while preserving neurologic function.The worldwide incidence of spontaneous subarachnoid hemorrhage is about 6.1 per 100,000 cases per year (Etminan et al., 2019). Eighty-five percent of cases are due to intracranial aneurysms. The mean age of those affected is 55 years, and two-thirds of the patients are female. The prognosis is related mainly to the neurologic condition after the subarachnoid hemorrhage and the age of the patient. Overall, 15% of patients die before reaching the hospital, another 20% die within 30 days, and overall 75% are dead or remain disabled. https://www.selleckchem.com/products/ca-170.html Case fatality has declined by 17% over the last 3 decades. Despite the improvement in outcome probably due to improved diagnosis, early aneurysm repair, administration of nimodipine, and advanced intensive care support, the outcome is not very good. Even among survivors, 75% have permanent cognitive deficits, mood disorders, fatigue, inability to return to work, and executive dysfunction and are often unable to return to their premorbid level of functioning. The key diagnostic test is computed tomography, and the treatments that are most strongly supported by scientific evidence are to undertake aneurysm repair in a timely fashion by endovascular coiling rather than neurosurgical clipping when feasible and to administer enteral nimodipine.