https://www.selleckchem.com/products/tvb-2640.html Animals acquire motor skills to better survive and adapt to a changing environment. The ability to learn novel motor actions without disturbing learned ones is essential to maintaining a broad motor repertoire. During motor learning, the brain makes a series of adjustments to build novel sensory-motor relationships that are stored within specific circuits for long-term retention. The neural mechanism of learning novel motor actions and transforming them into long-term memory still remains unclear. Here we review the latest findings with regard to the contributions of various brain subregions, cell types, and neurotransmitters to motor learning. Aiming to seek therapeutic strategies to restore the motor memory in relative neurodegenerative disorders, we also briefly describe the common experimental tests and manipulations for motor memory in rodents.Purpose The aim of the study is to compare the accuracy of unstructured preoperative Computed Tomography (CT) reports from non-tertiary diagnostic centers with intraoperative findings in a large cohort of patients with Chronic Otitis Media (COM) undergone surgery. Methods From 2012 to 2019, a total number of 301 patients were considered for our purposes. All patients with clinical evidence of COM had preoperative non-contrast high resolution CT scan of the temporal bone in non-tertiary diagnostic centers, performed within 3 months before surgery. Results The accuracy of CT reports was analyzed in terms of nature, anatomical site, disease extension, bony erosion, vascular structures abnormalities relevant to surgical planning, and Eustachian tube patency. Compared to post-surgical findings, CT reporting critical analysis revealed a tendency to overestimation of bony erosion, coupled to underestimated description of facial canal/lateral semi-circular canal, vascular structures, and Eustachian tube. Conclusion Discrepancies between CT reports and surgical findings in middle