This study aimed to isolate and investigate the potential of the peptide alanine-cysteine-glutamic acid-cysteine-aspartic acid (ACECD), a novel xanthine oxidase inhibitory (XODI) peptide derived from Skipjack tuna hydrolysate (HS). Ultrafiltration membranes were used to obtain HS-based peptides as successive ultrafiltration fractions (of decreasing molecular weight) of UF-1, UF-2, UF-3, and UF-4. Their antioxidant and xanthine oxidase (XOD) inhibitory activities were determined and further characterized by affinity-ultrafiltration coupled with HPLC-MALDI-TOF/TOF-MS and in silico techniques. https://www.selleckchem.com/products/semaxanib-su5416.html The results showed that peptides with a molecular weight (MW) cutoff of 600-1000 Da (UF-2) exhibited the highest antioxidant and XODI activities. A novel XODI peptide (ACECD) was identified with an IC50 value of 13.40 mmol/L, which decreased by 21.24% and 51.40% compared to those of UF-2 and HS, respectively. Molecular docking indicated that ACECD inserted into the active center of Mo atoms in XOD, which led to competitive attachment with XOD and caused inhibition. The study findings indicated that the ACECD peptide could be useful as a safe XODI substance to alleviate hyperuricemia.Roasting is crucial for producing large-leaf yellow tea (LYT) as it substantially affects chemical composition and sensory quality. However, the effect of roasting degree on LYT flavor quality is not clear. To investigate the effect of roasting degree on LYT flavor, the odor profiles and sensory evaluations of LYTs produced with small fire, medium fire and old fire roasting (OF) were determined. The OF was essential for the formation of LYT flavor with strong roasted, nutty, woody odors and weak fatty, fruity odors, and retaining high levels of GCG, total volatiles and heterocyclic compounds. Furthermore, the characteristic crispy-rice-like odor was only found in LYT with OF treatment and burnt flavor was missing. 2,3-Diethyl-5-methylpyrazine, trans-β-ionone with odor activity value above 1600 and 39 respectively offered roasted, floral odors, respectively in LYT. The current results provide a scientific basis for understanding the reactions that occur during the conventional production of LYT.Herein, an optical sensor based on nanostructured molecularly imprinted polymer (MIP) coated on a luminescent zirconium metal-organic framework (MIP/Zr-LMOF) is introduced, and its performance is investigated for the fluorescent determination of chloramphenicol (CAP) antibiotic residues in milk and honey. To fabricate the sensor, the surface of Zr-LMOF is modified with MIP in the presence of CAP template, resulting in the introduction of recognition sites for antibiotic molecules. The porous structure of Zr-LMOF with specific binding sites for CAP recognition benefiting from coated MIP leads to selective and sensitive detection of antibiotic. The probe yields a linear range for detection of CAP in trace concentrations (0.16-161.56 µg.L-1) and provides a detection limit of 0.013 µg.L-1. Acceptable recoveries are achieved for antibiotic in real samples, which are consistent with that obtained from liquid chromatography-tandem mass spectrometry (LC-MS/MS), confirm the favorable performance of sensor for accurate determination of CAP in practical applications.A saltiness perception enhancement method of grass carp meat conducted by microwave heating was investigated. Ion chromatographic results demonstrated that all samples had the same sodium level retained in matrices after being treated by water bath (WBV) and microwave with different power of 2.5, 7.5, 10, and 12.5 W/g (MWV). However, the meat treated by microwave exhibited a higher salty intensity than that of WBV, particularly MWV-10 W/g and MWV-12.5 W/g. The enhanced saltiness perception of meat treated by microwave was attributed to the facilitated water and sodium mobility demonstrated by low field-NMR and pulse-field-gradient stimulated echo (PFG-STE) 23Na NMR experiments. Furthermore, the enhancement was also related to the formation of microstructure favorable for sodium diffusion, originating from the insufficient denaturation and less exposure of hydrophobic groups of proteins induced by microwave heating. Therefore, microwave heating has the potential to enhance the saltiness perception of meat in the food industry.The effects of water irrigation management including conventional irrigation (CK), constant flooding irrigation (CFI) and alternate wetting and drying (AWD) on starch structure and physicochemical properties of two indica rice cultivars with good- and poor-quality were evaluated in the field condition with two years. The results showed that AWD could significantly increase peak viscosity, breakdown and gelatinization temperature, decreased setback and gelatinization enthalpy in two indica rice cultivars. However, starch granule size and amylopectin chain length distribution were differed the trends in the rice cultivars and treatments. AWD reduced starch granules size and amylopectin short chain, especially for large starch granules, but increased medium and long chain, which might contribute to better thermal stability and pasting viscosity for good-quality cultivar. Our study indicated that water irrigation management affected starch structure and physicochemical properties of indica rice starch, and would provide favorable information for improvement of rice starch in food industry.Understanding which volatile compounds discriminate between products can be useful for quality, innovation or product authenticity purposes. As dataset size and dimensionality increase, linear chemometric techniques like partial least squares discriminant analysis and variable identification (PLS-DA-VID) may not identify the most discriminant compounds. This research compared the performance of self-organizing maps and entropy-based feature selection (SOM-EFS) and PLS-DA-VID to identify discriminant compounds in 17 blue cheese varieties. A total of 172 volatiles were detected using headspace solid phase microextraction, gas chromatography and mass spectrometry, including 1-nonene and 2,6-dimethylpyridine, which were newly identified in blue cheese. Despite SOM-EFS selecting only 14 volatiles compared to 78 for PLS-DA-VID, SOM-EFS proved more effectively discriminant and improved the median five-fold cross-validated prediction accuracy of the model to 0.94 compared to 0.82 for PLS-DA-VID. These findings introduce SOM-EFS as a powerful non-linear exploratory data analysis approach in the field of volatile analytical chemistry.