Ulcerative colitis (UC) is an idiopathic inflammatory bowel disease (IBD) that causes long-lasting inflammation and ulcers in the innermost lining of the colon and rectum. Previous studies demonstrated that resveratrol suppresses colitis and colon cancer associated with colitis by improving glucose metabolism, but resveratrol use is limited by its low oral bioavailability. Combretastatin-A4 phosphate (CA4P) is a vascular-disrupting agent with antitumor activity. CA4P is structurally similar to resveratrol, but whether CA4P has the same effect as resveratrol on UC is not clear. In this study, we examined the pharmacological effects of CA4P administration on dextran sulfate sodium (DSS)-induced inflammation in a mouse model of UC. C57BL/6 mice were administered 2.5% DSS in the drinking water to induce acute UC. CA4P (11 mg/kg/d) was injected intraperitoneally daily. The Disease Activity Index (DAI) score and histological score were evaluated to determine the severity of UC. Colon tissues and blood samples were collected for histological analyses. The results show that CA4P plus DSS significantly decreased colon length (P less then 0.05 versus DSS+PBS group) and body weight (P less then 0.001 versus PBS group), while increased spleen weight (P less then 0.01 versus DSS+PBS group), DAI score (P less then 0.01 versus DSS+PBS group), and histological score (P less then 0.01 versus DSS+PBS group). Moreover, CA4P exacerbated the pathological features of colitis and significantly increased proinflammatory cytokines (IL-1β, IL-6, TNF-α) and inflammatory cells (neutrophil, lymphocyte, monocyte). These findings reveal that CA4P aggravates the symptoms of DSS-induced UC and provide a key reference for the potential of CA4P as an anticancer drug. Copyright © 2020 Tang, Xiong, Song, Ye, Liu, Wang, Zhang and Xiao.Background Depression is a long-term complex psychiatric disorder, and its etiology remains largely unknown. Valeriana jatamansi Jones ex Roxb (V. jatamansi) is used in the clinic for the treatment of depression, but there are insufficient reports of its antidepressive mechanisms and a poor understanding of its endogenous substance-related metabolism. The objective of this study was to identify biomarkers related to depression in serum samples and evaluate the antidepressive effects of the iridoid-rich fraction of V. jatamansi (IRFV) in a chronic unpredictable mild stress (CUMS) mouse model. Methods Here, CUMS was used to establish a mouse model of depression. Behavioral and biochemical indicators were investigated to evaluate the pharmacodynamic effects. A comprehensive serum metabolomics study by nuclear magnetic resonance (NMR) approach was applied to investigate the pharmacological mechanism of IRFV in CUMS mouse. Subsequently, we used multivariate statistical analysis to identify metabolic markers, such as principal component analysis (PCA) and orthogonal projection to latent structure with discriminant analysis (OPLS-DA), to distinguish between the CUMS mouse and the control group. Results After IRFV treatment, the immobility time, sucrose preference, and monoamine neurotransmitter were improved. PCA scores showed clear differences in metabolism between the CUMS group and control group. The PLS-DA or OPLS-DA model exhibited 26 metabolites as biomarkers to distinguish between the CUMS mice and the control mouse. Moreover, IRFV could significantly return 21 metabolites to normal levels. Conclusion The results confirmed that IRFV exerted an antidepressive effect by regulating multiple metabolic pathways, including the tricarboxylic acid cycle, the synthesis of neurotransmitters, and amino acid metabolism. These findings provide insights into the antidepressive mechanisms of IRFV. Copyright © 2020 Li, Wu, Chen, Wang, Guo, Zhao, Zhao, Wang, Liu and Yan.Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) widely expressed in neutrophils and other phagocytes. FPRs play important roles in host defense, inflammation, and the pathogenesis of infectious and inflammatory diseases. Because of these functions, FPRs are potential targets for anti-inflammatory therapies. In order to search for potentially novel anti-inflammatory agents, we examined Ganoderma (Lingzhi), a Chinese medicinal herbs known for its anti-inflammatory effects, and found that compound 18 (C18) derived from Ganoderma cochlear could limit the inflammatory response through FPR-related signaling pathways. Further studies showed that C18 could bind to FPR2 and induce conformation change of the receptor that differed from the conformational change induced by the pan-agonist, WKYMVm. C18 inhibited at the receptor level and blocked WKYMVm signaling through FPR2, resulting in reduced superoxide production and compromised cell chemotaxis. These results identified for the first time that a Ganoderma-derived component with inhibitory effects that acts through a G protein-coupled receptor FPR2. Considering its less than optimal IC50 value, further optimization of C18 would be necessary for future applications. Copyright © 2020 Wang, Peng, Ge, Zhang, Wang, Fan, Huang, Qiu and Ye.Increased public awareness of nutritional and health issues has resulted in the increasing consumption of food and herbal products made from the root of Pueraria montana var. lobata (Willd.) Maesen & S. M. Almeida ex Sanjappa & Predeep (kudzu vine) and P. https://www.selleckchem.com/products/enarodustat.html montana var. thomsonii (Benth.) M. R. Almeida. The famous herbal medicine Yufeng Ningxin, which is used to treat cardiovascular diseases, can be legally produced only using P. montana var. lobata. However, precise identification at the subspecies level is usually challenging when these products' ingredients lose their morphological characteristics after deep processing. Here, six herbarium specimens, 21 expert-identified original plant samples, 30 raw material samples, 10 food products and 12 herbal products were collected to test the subspecies-level authentication abilities of ITS2 sequences. The results showed that ITS2 sequences can distinguish P. montana var. lobata from P. montana var. thomsonii with stable single nucleotide polymorphism (SNP) sites. A total of 93.