https://www.selleckchem.com/products/SB590885.html © 2020 IOP Publishing Ltd.The Respiration Collector for In Vitro Analysis (ReCIVA) sampler, marketed by Owlstone Medical, provides a step forward in exhaled breath sampling through active sampling directly onto thermal desorption (TD) tubes. Although an improvement to the issues surrounding breath bag sampling, the ReCIVA device, first released in 2015, is a relatively new research and clinical tool that requires further exploration. Here, data are presented comparing two distinct ReCIVA devices. The results, comparing ReCIVA serial numbers #33 and #65, demonstrate that overall statistically insignificant results are obtained via targeted isoprene quantitation (p>0.05). However, when the data are parsed by the TD tube type used to capture breath volatiles, either Tenax TA or the dual bed Tenax/Carbograph 5TD (5TD), a statistical difference (p0.05). Global metabolomics analysis of the guided breathing rate data show more than 87% of the z-scores, comparing high and low breathing rates using both the Tenax and the 5TD tubes, are below the level for significance. Finally, data are provided from a single participant who displayed background levels of isoprene while illustrating levels of acetone consistent with the remaining participants. Collectively, these data support the use of multiple ReCIVA devices for exhaled breath collection and provide evidence for an instance where exhaled isoprene is consistent with background levels. Creative Commons Attribution license.We provide spectroscopic evidence for the charge density wave (CDW) phason mode at ≈ 0.93 THz in the two-leg, spin-1/2 ladders of Sr14Cu24O41using terahertz time-domain spectroscopy. We find that annealing in an oxygen atmosphere or doping with a low concentration of Co (≾1%) does not affect the CDW phason mode. However, Co doping at higher concentrations (10%), wherein the Co enters the ladder layers, destabilizes the CDW. We believe that the suppression o