https://www.selleckchem.com/products/bi-2852.html The financial performance of football clubs has become an essential element to ensure the solvency and viability of the club over time. For this, both the theory and the practical and regulatory evidence show the need to study financial factors, as well as sports and corporate factors to analyze the possible flow of income and for good management of the club's accounts, respectively. Through these factors, the present study analyzes the financial performance of European football clubs using neural networks as a methodology, where the popular multilayer perceptron and the novel quantum neural network are applied. The results show the financial performance of the club is determined by liquidity, leverage, and sporting performance. Additionally, the quantum network as the most accurate variant. These conclusions can be useful for football clubs and interest groups, as well as for regulatory bodies that try to make the best recommendations and conditions for the football industry.Generative adversarial networks (GANs), which are a promising type of deep generative network, have recently drawn considerable attention and made impressive progress. However, GAN models suffer from the well-known problem of mode collapse. This study focuses on this challenge and introduces a new model design, called the encoded multi-agent generative adversarial network (E-MGAN), which tackles the mode collapse problem by introducing the variational latent representations learned from a variable auto-encoder (VAE) to a multi-agent GAN. The variational latent representations are extracted from training data to replace the random noise input of the general multi-agent GANs. The generator in E-MGAN employs multiple generators and is penalized by a classifier. This integration guarantees that the proposed model not only enhances the quality of generated samples but also improves the diversity of generated samples to avoid the mode collapse problem