The incorporation of CNFs improved the WVP of the films but did not show any significant effect on the thermal properties of the films.Secondary metabolites of cyanobacteria and algae released during algal blooms often exhibit toxic effects, but only a small number of the metabolites are the subject of routine analytical screenings. https://www.selleckchem.com/products/tabersonine.html Alternatively, ecotoxicological assays offer a better representation of the overall negative effects. The aim of this work was to compare multiple assays in their sensitivity towards cellular algal organic matter (COM) of the toxin-producing cyanobacterium Microcystis aeruginosa. Multiple endpoints were investigated mortality, growth inhibition, bioluminescence inhibition, genotoxicity, endocrine-disrupting effects, oxidative stress, and the induction of ethoxyresorufin-O-deethylase (EROD). Three rainbow trout (Oncorhynchus mykiss) cell lines as well as representatives of bacteria, yeasts, algae, vascular plants, and crustaceans were employed, and the results were expressed per mg of dissolved organic carbon (DOC) in the COM. M. aeruginosa COM was toxic to the RTgill-W1, RTG-2, and RTL-W1 cell lines (EC50 values ranging from 0.48 ± 0.02 to 1.9 ± 0.1 mgDOC/L), to the crustacean Thamnocephalus platyurus (LC50 = 20 ± 1 mgDOC/L), and to Lepidium sativum (IC50 = 241 ± 13 mgDOC/L). In contrast, no effect was observed for bacteria and yeasts, and the growth of the alga Desmodesmus subspicatus was even stimulated. No genotoxicity, endocrine-disrupting effects or increase in oxidative stress or EROD activity was detected. The content of six microcystins (MC-LR, MC-RR, MC-YR, MC-LY, MC-LW, and MC-LF), anatoxin-a, cylindrospermopsin, and nodularin in the M. aeruginosa COM was determined by liquid chromatography-tandem mass spectrometry. An artificially prepared mixture of the detected cyanotoxins in the corresponding concentrations did not induce response in the O. mykiss cell lines and T. platyurus, suggesting that other cyanobacterial metabolites are responsible for the toxicity of M. aeruginosa. Ricin, a toxic glycoprotein derived from the castor bean plant, is one of the most potent poisons known in the world. Ricin intoxication is a fatal and uncommon medical condition and recently its use as a potential bioterrorism agent has also been reported. This study aims to identify the main characteristics of diagnosed ricin poisoning cases worldwide in order to raise awareness of this toxin among the population and clinicians. A collection of human case studies of ricin intoxication in the world was produced. The databases Pubmed, Sciencedirect and Google Scholar were used to extract articles from January 1980 to June 2020. Fifty ricin-intoxicated patients worldwide described in the literature have been identified. Most cases were found in Asia (19 cases), Europe (12 cases) and America (15 cases). Intoxication was mostly accidental (37 cases). Intoxication by castor bean is characterized by acute gastroenteritis-like disease as primary manifestations leading to severe fluid and electrolyte imbalanceserious respiratory or gastrointestinal illness. Clinicians and health care professionals should have a high level of suspicion when faced with an outbreak of serious respiratory or gastrointestinal illness.The first junior European Calcium Society online meeting, held October 20-21, 2020, aimed to promote junior researchers in the Ca2+ community. The meeting included four scientific sessions, covering Ca2+ research from molecular detail to whole organisms. Each session featured one invited speaker and three speakers selected based on submitted abstracts, with the overall aim of actively involving early-career researchers. Consequently, the meeting underlined the diversity of Ca2+ physiology, by showcasing research across scales and Kingdoms, as presented by a correspondingly diverse speaker panel across career stages and countries. In this meeting report, we introduce the visions of the junior European Calcium Society board and summarize the meeting content.The family of B-cell lymphoma-2 (Bcl-2) proteins exerts key functions in cellular health. Bcl-2 primarily acts in mitochondria where it controls the initiation of apoptosis. However, during the last decades, it has become clear that this family of proteins is also involved in controlling intracellular Ca2+ signaling, a critical process for the function of most cell types, including neurons. Several anti- and pro-apoptotic Bcl-2 family members are expressed in neurons and impact neuronal function. Importantly, expression levels of neuronal Bcl-2 proteins are affected by age. In this review, we focus on the emerging roles of Bcl-2 proteins in neuronal cells. Specifically, we discuss how their dysregulation contributes to the onset, development, and progression of neurodegeneration in the context of Alzheimer's disease (AD). Aberrant Ca2+ signaling plays an important role in the pathogenesis of AD, and we propose that dysregulation of the Bcl-2-Ca2+ signaling axis may contribute to the progression of AD and that herein, Bcl-2 may constitute a potential therapeutic target for the treatment of AD.Mesenchymal stem cells (MSCs) are multipotent stem cells. In addition to the capacity for self-renewal and multipotential differentiation, MSCs also have the following characteristics. MSCs can exert immunomodulatory functions through interaction with innate or adaptive immune cells, MSCs with poor immunogenicity can be used for allogeneic transplantation, and MSCs can "home" to inflammation and tumour sites. Based on these biological properties, MSCs demonstrate broad clinical application prospects in the treatment of tissue injury, autoimmune diseases, transplantation, cancer and other inflammation-related diseases. In this review we describe the biological characteristics of MSCs and discuss the research advances of MSCs in regenerative medicine, immunomodulation, oncology, and COVID-19, to fully understand the range of diseases in which MSC therapy may be beneficial.Fermentative production of γ-aminobutyric acid by the glutamate overproducing Corynebacterium glutamicum from cheap sugar feedstock is generally regarded as one of the most promising methods to reduce the production cost. However, the intracellularly expressed glutamate decarboxylase in C. glutamicum often showed feeble catalysis activity to convert glutamate into γ-aminobutyric acid. Here we tried to secretory express glutamate decarboxylase to achieve efficient extracellular decarboxylation of glutamate, thus improving the γ-aminobutyric acid production by C. glutamicum. We first tested glutamate decarboxylases from different sources, and the mutated glutamate decarboxylase GadBmut from E. coli with better catalytic performance was selected. Then, a signal peptide of the SEC translocation pathway directed the successful secretion of glutamate decarboxylase in C. glutamicum. The extracellular catalysis by secreted glutamate decarboxylase increased the γ-aminobutyric acid generation by three-fold, compared with intracellular catalysis.