https://www.selleckchem.com/MEK.html ut that effectively altering mitochondrial antioxidant capacity as a monotherapeutic approach to slow key histopathological and molecular drivers of FCAVD remains biologically and therapeutically challenging.Rheumatic heart disease (RHD), the principal long-term sequel of acute rheumatic fever (ARF), has been a major contributor to cardiac-related mortality in general population, especially in developing countries. With improvement in health and sanitation facilities across the globe, there has been almost a 50% reduction in mortality rate due to RHD over the last 25 years. However, recent estimates suggest that RHD still results in more than 300,000 deaths annually. In India alone, more than 100,000 deaths occur due to RHD every year (Watkins DA et al., N Engl J Med, 2017). Children and adolescents (aged below 15 years) constitute at least one-fourth of the total population in India. Besides, ARF is, for the most part, a pediatric disorder. The pediatric population, therefore, requires special consideration in developing countries to reduce the burden of RHD. In the developed world, Kawasaki disease (KD) has emerged as the most important cause of acquired heart disease in children. Mirroring global trends over the past two decades, India also has witnessed a surge in the number of cases of KD. Similarly, many regions across the globe classified as "high-risk" for ARF have witnessed an increasing trend in the incidence of KD. This translates to a double challenge faced by pediatric health care providers in improving cardiac outcomes of children affected with ARF or KD. We highlight this predicament by reviewing the incidence trends of ARF and KD over the last 50 years in ARF "high-risk" regions.Background Cardiac amyloidosis is an increasingly recognized etiology of heart failure, in part due to the rise of non-invasive nuclear bone scintigraphy. Molecular imaging using positron emission tomography (PET) has promised the direct v