https://www.selleckchem.com/products/nvp-bsk805.html MTX-PG induces hepatocytes apoptosis by activation of caspase 3 via the intrinsic pathway. Clinically, aggravation of underlying fatty liver to non-alcoholic steatohepatitis with fibrosis seems to be an important mechanism of liver injury in MTX-treated RA patients. Therefore, there is a need for monitoring liver injury in RA, psoriatic and cancer patients with NAFLD and fibrosis risk factors during MTX treatment. This review summarizes the possible molecular mechanism of MTX-induced hepatotoxicity. It may pave the way for early detection of liver injury and develop novel strategies for treating MTX mediated hepatotoxicity.Gene therapy and more recently, gene editing is attractive via pulmonary delivery for enhanced regional targeting. However, processing of sensitive therapeutics into dry powders for inhalation can be problematic due to relatively stressful spraying or milling steps. Thin-film freeze-drying (TFFD) has attracted attention with its promising application in the production of DPI formulations possessing respirable particle size range (1-5 µm) particularly for thermally or shear sensitive therapeutics. In this study, gene editing dry powder formulations containing PEGylated chitosan/CRISPR-Cas9 nanocomplexes were prepared by TFFD. To evaluate stability during processing, nanocomplex size, zeta potential and transfection efficiency of reconstituted formulations were evaluated, and six potential DPI formulations were identified and characterized in terms of geometric particle size, powder surface morphology, and crystallinity. It was found that two formulations containing 3% mannitol with or without leucine were identified as suitable for inhalation with a desired aerodynamic performance. The flow rate dependency and inhaler dependency of these two formulations were also evaluated at different flow rates (60 L/min and 45 L/min) and different inhaler devices (RS01 DPI and HandiHaler) using NGI testing. T