The present data suggested that Nogo‑A may facilitate the onset and development of AD by promoting Aβ secretion, providing information on a potential novel target for AD therapy.Inflammation and the inflammasome complex formation are associated with numerous diseases, and palmitates or lipopolysaccharides (LPS) have been identified as potential links between these disorders. Recently, edible insects such as the Gryllus bimaculatus (GB) and the larva of Tenebrio molitor have emerged as alternative food sources. In the present study, the effect of GB on LPS‑ or palmitate‑induced production of inflammatory cytokines, the formation of the inflammasome complex, reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress and cell death was investigated in RAW264.7 cells. The results revealed that GB extract downregulated the production of inflammatory cytokines (such as TNF‑α, IL‑1β and IL‑6). Since the role of the MAP kinase and NF‑κB signalling pathways in the production of inflammatory cytokines is well established, the translocation of p65 into the nucleus and the phosphorylation of IκB and MAP kinases were further examined. Both these processes were upregulated following LPS and palmitate treatment, but they were inhibited by the GB extract. Moreover, GB extract decreased LPS/palmitate‑induced inflammasome complex formation (assessed via analysing the levels of the apoptosis‑associated speck‑like protein containing a caspase‑recruitment domain, NOD‑like receptor family pyrin domain containing 3, cleaved caspase‑1 and IL‑1β), the generation of ROS, ER stress and cell death. Treatment with SB203580 (a p38 inhibitor), SP600125 (a JNK inhibitor) and pyrrolidinedithiocarbamate ammonium (an NF‑κB inhibitor) decreased the production of inflammatory cytokines, as well as helped in the recovery of LPS/palmitate‑induced cell death. Overall, GB extract served an inhibitory role in LPS/palmitate‑induced inflammation via inhibiting the MAP kinase and NF‑κB signalling pathways, inflammasome complex formation, ROS generation, ER stress and cell death.The release of neurotransmitters following the fusion of synaptic vesicles and the presynaptic membrane is an important process in the transmission of neuronal information. Syntaxin-binding protein 1 (Munc18-1) is a synaptic fusion protein binding protein, which mainly regulates synaptic vesicle fusion and neurotransmitter release by interacting with soluble N-ethylmaleimide sensitive factor attachment protein receptor. In addition to affecting neurotransmitter transmission, Munc18-1 is also involved in regulating neurosynaptic plasticity, neurodevelopment and neuroendocrine cell release functions (including thyroxine and insulin release). A number of previous studies have demonstrated that Munc18-1 has diverse and vital biological functions, and that its abnormal expression serves an important role in the pathogenesis of a variety of neurological diseases, including epileptic encephalopathy, schizophrenia, autism, Parkinson's disease, Alzheimer's disease, multiple sclerosis, Duchenne's muscular dystrophy and neuronal ceroid lipofuscinosis. The present review summarizes the function of Munc18-1 and its possible relationship to the pathogenesis of various neurological diseases.In recent decades, the role of microRNAs (miRs) in the development of pneumonia has been reported by a number of researchers. The present study aimed to investigate the role of miR‑409‑3p in lipopolysaccharide (LPS)‑induced human bronchial epithelial cells and the implication for bronchopneumonia. An in vitro inflammation model was established using LPS‑induced BEAS‑2B cells. Cell apoptosis was determined by flow cytometry. Inflammatory factors were detected by ELISA and reverse transcription‑quantitative PCR. Protein levels of Janus kinase 1 (JAK1)/STAT3 and suppressor of cytokine signaling (SOCS)3 were determined by western blotting. Dual‑luciferase reporter assay was performed to confirm the interaction between miR‑409‑3p and SOCS3. LPS treatment significantly increased miR‑409‑3p expression and decreased the expression levels of SOCS3 in BEAS‑2B cells. Dual‑luciferase reporter assay demonstrated that miR‑409‑3p directly targeted and negatively regulated SOCS3. Inhibition of miR‑409‑3p markedly decreased the levels of TNF‑α, IL‑6 and IL‑1β, and suppressed apoptosis induced by LPS, which was reversed by SOCS3‑knockdown. The inhibition of SOCS3 significantly activated JAK1/STAT3 signaling, as well as enhancing the levels of TNF‑α, IL‑6 and IL‑1β, and promoting apoptosis, which was reversed by the JAK1 inhibitor Tofacitinib. Suppression of miR‑409‑3p improved LPS‑induced inflammation through SOCS3 in LPS‑treated BEAS‑2B cells, and this may be caused by regulating JAK1/STAT3 signaling.Cardiac fibrosis is a common pathophysiological condition involved in numerous types of cardiovascular disease. The renin‑angiotensin system, particularly angiotensin II (AngII), serves an important role in cardiac fibrosis and remodeling. Furthermore, p21‑activated kinase 1 (PAK1) is a highly conserved serine/threonine protein kinase, which is abundantly expressed in all regions of the heart. However, the role of PAK1 in AngII‑mediated activation of cardiac fibroblasts remains unknown. Therefore, the present study aimed to investigate the role of PAK1 in cardiac fibroblasts and its underlying mechanisms. Human cardiac fibroblasts (HCFs) were cultured and treated with PAK1 inhibitor IPA‑3 or transduced with PAK1 short hairpin (sh)RNA by lentiviral particles to silence PAK1 expression levels. https://www.selleckchem.com/products/fht-1015.html Subsequently, the cell proliferation and migration abilities of the HCFs were determined. Western blot analysis was used to detect the phosphorylation status of Janus kinase (JNK) and c‑Jun. A Cell Counting Kit‑8 assay showed that PAK1 inhibition following treatment of HCFs with 5 µM IPA‑3 or PAK1‑shRNA, significantly attenuated AngII‑induced proliferation of fibroblasts. In addition, wound healing and Transwell migration assays demonstrated that inhibition of PAK1 significantly inhibited AngII‑induced cell migration. Finally, decreased PAK1 expression levels downregulated AngII‑mediated upregulation of α‑smooth muscle actin (α‑SMA), collagen I, phosphorylated (p)‑JNK and p‑c‑Jun, a downstream molecule of JNK signaling. These findings indicate that PAK1 contributes to AngII‑induced proliferation, migration and transdifferentiation of HCFs via the JNK/c‑Jun pathway.