https://www.selleckchem.com/products/irak4-in-4.html Depending on the length of the terminal flexible alkoxy chain, the prepared SMHBCs were shown to exhibit di- or tri-morphic enantiotropic mesophases. The effect of replacing one of the -COO- connecting units by an azo group (-N=N-) in the basic molecule (I), on the mesomorphic properties has been investigated experimentally (via DSC) and theoretically (via DFT). The DFT calculations revealed that the polarizability, the dipole moment, and the aspect ratio of the investigated SMHBCs are lower than those of their corresponding ester/azo analogs. All these factors rationalize the enhanced smectic mesophase ranges of the complexes compared with those of the ester/azo analogs. The high aspect ratios and dipole moments of the SMHBCs of the azo derivative enforces the lateral intermolecular attraction that permits the formation of the more ordered smectic C mesophase with respect to the enhanced polymorphic mesophases of the diester derivative.Widely spread crystal lattices of perovskites represent a natural flexible platform for chemical design of various advanced functional materials with unique features. An interplay between chemical bonding, defects and crystallochemical peculiarities makes the perovskite structure a "LEGO designer" utilizing natural features of chemical elements of the renowned Mendeleev's Periodic Table (PTE) celebrating its 150-year anniversary. In this mini-review, crystal chemistry and bonding features, physical and functional properties, preparation methods and tuning functional properties with periodicity "tools" of the PTE will be exemplified for legendary families of high-temperature superconductive cuprates, colossal magnetoresistive manganites and hybrid lead halides for a new generation of solar cells.This study numerically investigates a two-dimensional physical model of methane/air mixture combustion in catalytic and non-catalytic porous media. The temperature distribution and flame sta