Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.Reproductive senescence is an age-associated decline in reproductive performance, which often arises as a trade-off between current and future reproduction. Given that mortality is inevitable, increased allocation into current reproduction is favoured despite costs paid later in life. This assumption is violated in organisms with post-maturity growth whose reproductive output increases long after maturity. While reproductive senescence is frequently studied in animals with determinate growth at maturity, such as insects or mammals, we have very limited understanding of reproductive senescence in organisms with an extensive post-maturity growth period. The fact that many post-maturity growers experience strong adult mortality leads to conflicting expectations for reproductive senescence. The aim of this study was to investigate how co-occurrence of rapid life history and post-maturity growth mould reproductive senescence in a short-lived killifish, Nothobranchius furzeri, using longitudinal data on laboratory case of reproductive senescence in a fish with a long post-maturation growth period, unusually rapid development and short life span. The onset of reproductive senescence was postponed compared to animals that cease growing at sexual maturity. Fish and other animals with post-maturity growth have long been considered insusceptible to ageing but this conclusion may be related to the previous lack of longitudinal data rather than to the absence of reproductive senescence in such organisms. Whilst excision biopsy is traditionally preferred, advances in radiological and histological techniques warrant a re-look at core biopsy as a viable primary diagnostic method. Over a 3-year period, all patients who underwent core biopsy to investigate lymphoma at our centre were included. 554 consecutive patients were included (40.1% prior lymphoma and 59.4% new presentations). Three or more cores were taken in 420 (75.8%) cases. Median time from request to biopsy and biopsy to histology report was 2 (0-40) days and 7 (1-24) days, respectively. 510/544 (93.8%) biopsies were diagnostic. There was no difference in whether the biopsy was diagnostic based on indication (new vs. relapsed lymphoma) (P=.445), whether biopsy was PET-directed (P=.507), for T-cell lymphoma (P=.468) or nodal vs. extra-nodal (P=.693). Thirty-eight patients (6.9%) required a second biopsy due to inadequate tissue. In a patient experience survey, only 13.9% reported any complications (1 self-limiting minor bleeding, 4 bruising) whilst 16.7% reported any discomfort beyond 12hours. Core biopsy performed by experienced radiologists and analysed by expert haemato-pathologists is a reliable, well-tolerated method for diagnosing lymphoma and confirming relapse. Multiple cores can be obtained under local anaesthetic yielding sufficient material in the majority of cases. Core biopsy performed by experienced radiologists and analysed by expert haemato-pathologists is a reliable, well-tolerated method for diagnosing lymphoma and confirming relapse. Multiple cores can be obtained under local anaesthetic yielding sufficient material in the majority of cases.Coexistence of species requires equalizing mechanisms that minimize fitness differences, which are balanced by stabilizing mechanisms that enhance negative intraspecific interactions versus interspecific ones. Here, we develop a simple theoretical framework that allows measuring the relative strength of intraspecific versus interspecific competition in dominance hierarchies. We use it to evaluate mechanisms promoting coexistence between two congeneric charr that compete for foraging positions, which strongly influence density-dependent growth and survival. Agonistic interactions (n = 761) among 71 Dolly Varden Salvelinus malma and whitespotted charr Salvelinus leucomaenis were measured by snorkelling in two pools in the sympatric zone of a Hokkaido stream during two summers. Interspecific dominance hierarchies, analysed using three methods, were closely correlated with fish length but the species treated each other equally. Ranks for the most dominant fish in each pool, determined directly by knockout experimr. The plurality of evidence indicates that fitness differences between these ecologically equivalent species are small in this local assemblage, and balanced by resource partitioning, a modest stabilizing mechanism that promotes coexistence. The theoretical framework presented here is a useful tool to evaluate the strength of interspecific versus intraspecific competition, which combined with information on trade-offs in ecological performance can contribute to a mechanistic understanding of species coexistence.Parents providing care must sometimes choose between rearing locations that are most favourable for offspring versus those that are most favourable for themselves. Here, we measured how both parental and offspring performance varied in nest sites distributed along an environmental gradient. The plainfin midshipman fish Porichthys notatus nests along a tidal gradient. When ascending from the subtidal to the high intertidal at low tide, both nest temperature and frequency of air exposure increase. https://www.selleckchem.com/products/Decitabine.html We used one lab and two field experiments to investigate how parental nest site choices across tidal elevations are linked to the physiological costs incurred by parents and the developmental benefits accrued by offspring. Under warmer incubation conditions, simulating high intertidal nests, offspring developed faster but had higher mortality rates compared to those incubated in cooler conditions that mimicked subtidal nests. In the field, males in higher intertidal nests were more active caregivers, but their young still died at the fastest rates. Larger males claimed and retained low intertidal nests, where offspring survival and development rates were also highest. Our results suggest that males compete more intensively for nest sites in the low intertidal, where they can raise their young quickly and with lower per-offspring investments. Smaller, less-competitive males forced into higher intertidal sites nest earlier in the season and provide more active parental care, possibly to bolster brood survival under harsh environmental conditions.