Most common tumor types were melanoma (37%) and lung cancer (19%). Seventy-four per cent were treated with antiprogrammed cell death (PD-1)/PD-L1 therapy. Thirty-nine per cent had signs of enterocolitis on CT scan and 58% had biopsy-proven ICI enterocolitis. Sensitivity and specificity of CT were 50% and 74%, respectively. PPV was 73% and NPV was 52%. Of those with confirmed ICI enterocolitis, 70% had grade 3 or higher symptoms, 91% received steroids and 40% received infliximab. The performance of CT scan for diagnosis of ICI enterocolitis is moderate to poor and does not replace endoscopy with biopsy. The performance of CT scan for diagnosis of ICI enterocolitis is moderate to poor and does not replace endoscopy with biopsy.Indications for immune checkpoint inhibitor therapy are increasing. As the population ages, many patients receiving such drugs will be older adults. Such patients are under-represented in clinical trials, and therefore the safety of immune checkpoint inhibitors in this population has not been adequately assessed. A retrospective multicenter analysis of toxicities was performed in patients with advanced or metastatic solid cancers receiving anti-programmed cell death protein 1 (anti-PD-1) and/or anti-CTLA4 antibodies across three age cohorts ( less then 65 years, 65-74 years and ≥75 years) using univariable and multivariable analyzes. Eligible patients (n=448) were divided into age cohorts less then 65 years (n=185), 65-74 years (n=154) and ≥75 years (n=109). Fewer patients in the oldest cohort (7.3%) received an anti-CTLA4 antibody containing regimen compared with the younger cohorts (21.1% and 17.5%). There was no significant difference overall in all grade or ≥G3 toxicities between age cohorts. Significantly fewer patients in the older (65-74 years and ≥75 years) age cohorts discontinued treatment because of toxicity (10.1% and 7.4%) compared with in the less then 65 years cohort (20.5%; p=0.006). Using logistic regression, only treatment type (ipilimumab containing) was significantly associated with all grade toxicity. However, there was a significantly lower incidence of all-grade endocrine toxicity in the oldest cohort (11.0%) compared with the youngest cohort (22.7%, p=0.02; OR 0.43, 95% CI 0.21 to 0.87), while all-grade dermatological toxicity showed the reverse trend (28.4% vs 18.9%; OR 1.85, 95% CI 1.04 to 3.30). Results were corroborated in the sensitivity analysis using only data from patients who received PD-1 inhibitor monotherapy. This multicenter, real-world cohort demonstrates that immune checkpoint inhibitor therapy is safe and well tolerated regardless of age, with no appreciable increase in adverse events in older adult patients.Periodic pattern formation on the cellular and tissue scale is an important process and has been extensively studied. However, periodic pattern formation at the subcellular level still remains poorly understood. The C. elegans epidermis displays a highly ordered parallel stripe pattern as part of its subcellular structure, making it an ideal model to study the formation and reorganization of periodic patterns within cells. Here, we show that the initial formation of periodic striped patterns in the C. elegans epidermis is dependent on actin and spectrin, and requires the apical membrane attachment structures for maintenance. The periodic subcellular structures do not accommodate cell growth by continuously making new stripes. Instead, they increase the number of stripes by going through one round of uniform duplication, which is independent of the increasing epidermal length or the developmental cycles. This long-range synchronized reorganization of subcellular structures is achieved by physical links established by extracellular collagens together with extension forces generated from epidermal cell growth. Our studies uncover a novel strategy employed by evenly spaced and interlinked subcellular structures to maintain their integrity and equidistribution during cell growth and tissue development.Lipid droplets (LDs) are implicated in conditions of lipid and protein dysregulation. The fat storage-inducing transmembrane (FIT; also known as FITM) family induces LD formation. Here, we establish a model system to study the role of the Saccharomyces cerevisiae FIT homologues (ScFIT), SCS3 and YFT2, in the proteostasis and stress response pathways. While LD biogenesis and basal endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) remain unaltered in ScFIT mutants, SCS3 was found to be essential for proper stress-induced UPR activation and for viability in the absence of the sole yeast UPR transducer IRE1 Owing to not having a functional UPR, cells with mutated SCS3 exhibited an accumulation of triacylglycerol within the ER along with aberrant LD morphology, suggesting that there is a UPR-dependent compensatory mechanism that acts to mitigate lack of SCS3 Additionally, SCS3 was necessary to maintain phospholipid homeostasis. https://www.selleckchem.com/products/CX-3543.html Strikingly, global protein ubiquitylation and the turnover of both ER and cytoplasmic misfolded proteins is impaired in ScFITΔ cells, while a screen for interacting partners of Scs3 identifies components of the proteostatic machinery as putative targets. Together, our data support a model where ScFITs play an important role in lipid metabolism and proteostasis beyond their defined roles in LD biogenesis.This article has an associated First Person interview with the first author of the paper.The core protease (CP) subcomplex of the 26S proteasome houses the proteolytic active sites and assumes a barrel shape comprised of four co-axially stacked heptameric rings formed by structurally related α- and β-subunits. CP biogenesis typically begins with the assembly of the α-ring, which then provides a template for β-subunit integration. In eukaryotes, α-ring assembly is partially mediated by two hetero-dimeric chaperones, termed Pba1-Pba2 (Add66) and Pba3-Pba4 (also known as Irc25-Poc4) in yeast. Pba1-Pba2 initially promotes orderly recruitment of the α-subunits through interactions between their C-terminal HbYX or HbF motifs and pockets at the α5-α6 and α6-α7 interfaces. Here, we identified PBAC5 as a fifth α-ring assembly chaperone in Arabidopsis that directly binds the Pba1 homolog PBAC1 to form a trimeric PBAC5-PBAC1-PBAC2 complex. PBAC5 harbors a HbYX motif that docks with a pocket between the α4 and α5 subunits during α-ring construction. Arabidopsis lacking PBAC5, PBAC1 and/or PBAC2 are hypersensitive to proteotoxic, salt and osmotic stresses, and display proteasome assembly defects.