The frontolimbic regions might be major components of task MRI-based functional connectivity in MDD. However, different scenarios and tasks would influence the representations of results.Phenotype networks enable clinicians to elucidate the patterns of coexistence and interactions among the clinical symptoms, negative cognitive styles , neurocognitive performance, and environmental factors in major depressive disorder (MDD). Results of phenotype network approach could be used in finding the target symptoms as these are tightly connected or associated with many other phenomena within the phenotype network of MDD specifically when comorbid psychiatric disorder(s) is/are present. Further, by comparing the differential patterns of phenotype networks before and after the treatment, changing or enduring patterns of associations among the clinical phenomena in MDD have been deciphered.Brain structural covariance networks describe the inter-regional co-varying patterns of brain morphologies, and overlapping findings have been reported between the brain structural covariance network and coordinated trajectories of brain development and maturation. Intra-individual brain structural covariance illustrates the degrees of similarities among the different brain regions for how much the values of brain morphological features are deviated from those of healthy controls. Inter-individual brain structural covariance reflects the degrees of concordance among the different brain regions for the inter-individual distribution of brain morphologic values. Estimation of the graph metrics for these brain structural covariance networks uncovers the organizational profile of brain morphological variations in the whole brain and the regional distribution of brain hubs.Cancer is a complex and multistage disease that causes suffering worldwide. Several mutations in tumor suppressor proteins are mostly responsible for tumorigenic development. Thus, determination of the mutations and developing a mutation targeted therapy are crucial in order to cure cancer. Moreover, since healthy cells do not have mutations in their tumor suppressor genes, mutation-specific treatment is responsible for selective treatment without harming a healthy tissue in the body. In this current study, lead borate nanoparticles (LB-Np) have been synthesized, and their effects on P53 mutant cancer cells were investigated. The synthesis method includes steps of mixing a borate buffer solution with the lead nitrate solution, washing the resulting precipitate with distilled water and eventually preparing stable LB-Np solutions. Cell viability analysis was conducted to identify the toxicity of LB-Np in HaCaT, A549, MCF7, and T47D cell lines. The changes in morphologies of breast cancer cell lines were demonstrated by using microscopical analysis. Additionally, alterations in gene expressions were determined in breast cancer cell lines after LB-Np treatment. https://www.selleckchem.com/products/msa-2.html This multidisciplinary study also identified the selective effect of LB-Np in cancer cell lines, in vitro. MTS and quantitative polymerase chain reaction assays demonstrated the effect of LB-Np were specific for p53 mutation cell line, T47D. Breast cancer cell line T47D has 580 C/T mutation which affects the activation of p53 tumor suppressor protein. However, LB-Np treatment effectively killed T47D cell lines and did not affect any other cell lines that have no p53 mutations such as MCF7, A549, and healthy HaCaT. Overall, synthesized LB-Np were found to be effective in p53-mutated cell lines and showed a remarkable selective anti-cancer activity.In this study, we created a reproducible myocardial infarction (MI) model in pigs characterized by a low mortality rate and significant changes in left ventricular function. After administering an arrhythmia prevention regimen, we created a 90-min balloon-induced percutaneous MI in 42 pigs below the first diagonal branch (D1) of the left anterior descending artery. Echocardiograms were performed before and 14 days after MI induction. Pigs with a > 30% decrease in left ventricular ejection fraction (LVEF) underwent electrophysiological mapping by the NOGA system. Our mortality rate was 4.8%. The incidence of ventricular fibrillation (VF) was 28.6%; all VF events were successfully resuscitated. At day 14, echocardiography and NOGA mapping confirmed transmural scar. LVEF decreased 41% from baseline. Radial and circumferential strain significantly decreased in the LAD distal to D1, and the LV showed dyssynchrony. An anti-arrhythmia regimen decreased mortality significantly, and our model induced dramatic functional changes. The basic procedures of the model included an arrhythmia prevention protocol and myocardial infarction creation, which effectively decreased mortality and provided a robust change in left ventricular (LV) function after 14 days.Interleukin-12 (IL-12) is a heterodimeric cytokine encoded by two separate genes, IL12A and IL12B, which may play a regulatory role in allergen-induced inflammation through CD4+ T-cell subsets polarization. The aim of this study was to investigate the association of single-nucleotide polymorphisms (SNPs) in the IL12B gene with susceptibility to allergic rhinitis (AR). We performed a case-control study including 130 AR patients and 130 healthy controls to evaluate the possible association between IL12B gene SNPs (rs3212227, rs6887695) and the risk of AR using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Our results showed no significant association between IL12B rs3212227 A > C polymorphism with AR. In contrast, the GC genotype of rs6887695 G > C was associated with susceptibility to AR in comparison with the GG genotype (p = 0.049, OR = 1.684, 95% CI 1.002-2.83). We also observed a statistically significant difference in the additive model (GC versus GG + CC, p = 0.03, OR = 1.705, 95% CI 1.040-2.794) for SNPs rs6887695. Furthermore, haplotypes analysis demonstrated that C-C haplotype was associated with an increased risk of AR (p = 0.01, OR = 1.845, 95% CI 1.114-3.057). Our findings suggest that IL12B rs6887695 polymorphism may be a potential biomarker for susceptibility to AR in an Iranian population.