inflammation may directly contribute to the development of NAFLD, especially of the gut vascular barricade dysfunction.Tripentaphenes are 2D nanocarbon lattices conceptually obtained from the assembly of acepentalene units. In this work, density functional theory is used to investigate their structural, electronic, and vibrational properties. Their bonding configuration is rationalized with a resonance mechanism, which is unique to each of the 2D assemblies. Their formation energies are found to lie within the range of other previously synthesized carbon nanostructures and phonon calculations indicate their dynamical stability. In addition, all studied tripentaphenes are metallic and display different features (e.g., Dirac cone) depending on the details of the atomic structure. The resonance structure also plays an important role in determining the electronic properties as it leads to delocalized electronic states, further highlighting the potential of the structures in nanoelectronics.Monomers of 4-methoxyindole and 5-methoxyindole trapped in low-temperature xenon matrices (15-16 K) were characterized by IR spectroscopy, in separate experiments. Each compound was shown to adopt the most stable 1H-tautomeric form. The photochemistry of the matrix-isolated compounds was then investigated by exciting the matrices with narrowband UV light with λ ≤ 305 nm. Two main photoproducts, similar for each compound, have been detected (1) 4-methoxy- or 5-methoxy-indolyl radical, resulting from cleavage of the N-H bond; (2) 3H-tautomers (4-methoxy- or 5-methoxy-) with the released hydrogen atom reconnected at the C3 ring carbon atom. The presence of the two types of photoproducts in the UV-irradiated matrices was confirmed by comparison of their B3LYP/6-311++G(d,p) calculated IR spectra with the experimental spectra emerging upon the irradiations. The mechanism of the observed phototransformations was elucidated by Natural Bond Orbital and Natural Resonance Theory computations on the methoxy-substituted indolyl radicals resulting from the N-H bond cleavage. The highest natural atomic spin densities were predicted at the C3 and N1 positions of the indolyl ring, corresponding to a predominance of the resonance structures with the radical centres located at these two atoms. As a whole, the obtained experimental and theoretical data allowed establishing a general pattern for the photochemistry of methoxyindoles under matrix-isolation conditions.Searching for new-type, eco-friendly, and Earth-abundant thermoelectric materials, which can be used as an alternative to the high-cost bismuth telluride, is important for near-room-temperature applications. In this work, nanostructured monoclinic Cu2Se with a low carrier concentration has been synthesized by a wet mechanical alloying process combined with spark plasma sintering. Such a low carrier concentration, which originates from the effectively suppressed Cu deficiencies during the fabrication process, induces a relatively low electrical conductivity and carrier thermal conductivity. Besides, the nanostructured grains combined with point defects and phonon resonance enhance the phonon scattering to induce a low lattice thermal conductivity without sacrificing the electrical transport properties. https://www.selleckchem.com/products/l-ornithine-l-aspartate.html As a result, our nanostructured monoclinic Cu2Se obtains a figure of merit of 0.72 at 380 K with good thermal stability. This work indicates that nanostructured monoclinic Cu2Se is a promising near-room-temperature thermoelectric material.Spin-crossover (SCO) active transition metal complexes are a class of switchable molecular materials. Such complexes undergo hysteretic high-spin (HS) to low-spin (LS) transition, and vice versa, rendering them suitable for the development of molecule-based switching and memory elements. Therefore, the search for SCO complexes undergoing abrupt and hysteretic SCO, that is, bistable SCO, is actively carried out by the molecular magnetism community. In this study, we report the bistable SCO characteristics associated with a new series of iron(ii) complexes-[Fe(BPP-CN)2](X)2, X = BF4 (1a-d) or ClO4 (2)-belonging to the [Fe(BPP-R)2]2+ (BPP = 2,6-bis(pyrazol-1-yl)pyridine) family of complexes. Among the complexes, the lattice solvent-free complex 2 showed a stable and complete SCO (T1/2 = 241 K) with a thermal hysteresis width (ΔT) of 28 K-the widest ΔT reported so far for a [Fe(BPP-R)2](X)2 family of complexes, showing abrupt SCO. The reproducible and bistable SCO shown by the relatively simple [Fe(BPP-CN)2](X)2 series of molecular complexes is encouraging to pursue [Fe(BPP-R)2]2+ systems for the realization of technologically relevant SCO complexes.Photocatalytic solar-to-fuel conversion has been of great interest in recent years. Nevertheless, the rational structural manipulation of photocatalysts toward an efficient H2 evolution reaction (HER) is still under-developed. In this work, by employing CdS nanowires as the growth substrate, unique one-dimensional (1D) CdS@Cd0.5Zn0.5S@ZnS-Ni(OH)2 heterostructures were first synthesized through the ultrasonic water-bath reaction combined with subsequent hydrothermal and in situ photo-deposition processes. Under the optimized conditions, CS@30CZ0.5S@40ZS-3N with 30 wt% Cd0.5Zn0.5S, 40 wt% ZnS, and 3 wt% Ni(OH)2 achieves a visible-light-driven HER activity as high as 86.79 mmol h-1 g-1 (corresponding to an apparent quantum yield of 22.8% at 420 nm), which is 4 and 119 times higher than that of Pt-decorated CS@30CZ0.5S@40ZS and CdS, respectively. In addition, CdS@Cd0.5Zn0.5S@ZnS-Ni(OH)2 is also endowed with a good stability for H2 production under long-term irradiation. The spatial separation of photo-redox sites and epitaxial heterointerfaces in CdS@Cd0.5Zn0.5S@ZnS-Ni(OH)2 nanowires facilitate the charge transfer and separation effectively, accounting well for their superior photocatalytic capability. The results indicated in this work could benefit the exploitation of high-performance nanostructures for promising photocatalytic applications.The Heusler alloys CoFeRGa (R = Ti, V, Cr, Mn, Cu, and Nb) have similar chemical compositions, but exhibit remarkably distinct electronic structures, magnetism and transport properties. These structures cover an extensive range of spin gapless semiconductors, half-metals, semiconductors and metals with either ferromagnetic, ferrimagnetic, antiferromagnetic, or nonmagnetic states. The Heusler alloys have three types of structures, namely, type-I, type-II, and type-III. By means of first-principles calculation combined with the Boltzmann equation within the consideration of spin-freedom, we explore the transport feature of the most stable structure (type-I). In addition, we provide evidence that all the considered materials are mechanically and dynamically stable, possessing high strength and toughness to resist compression and tensile strain. Moreover, the distinct electronic (metallic, insulating, and half-metallic) properties and magnetic behaviors originate mainly from a cooperative electron transfer and electronic structures have been verified by our calculation.