https://www.selleckchem.com/products/unc-3230.html The purpose of this study was to evaluate the feasibility of electromagnetic (EM) navigation for guidance on osteotomies in patients undergoing oncologic mandibular surgery. Preoperatively, a 3D rendered model of the mandible was constructed from diagnostic computed tomography (CT) images. Cutting guides and patient specific reconstruction plates were designed and printed for intraoperative use. Intraoperative patient registration was performed using a cone beam CT scan (CBCT). The location of the mandible was tracked with an EM sensor fixated to the mandible. The real-time location of both the mandible and a pointer were displayed on the navigation system. Accuracy measurements were performed by pinpointing four anatomical landmarks and four landmarks on the cutting guide using the pointer on the patient and comparing these locations to the corresponding locations on the CBCT. Differences between actual and virtual locations were expressed as target registration error (TRE). The procedure was performed in eleven patients. TREs were 3.2 ± 1.1 mm and 2.6 ± 1.5 mm using anatomical landmarks and landmarks on the cutting guide, respectively. The navigation procedure added on average half an hour to the duration of the surgery. This is the first study that reports on the accuracy of EM navigation in patients undergoing mandibular surgery.16S rRNA sequencing of human fecal samples has been tremendously successful in identifying microbiome changes associated with both aging and disease. A number of studies have described microbial alterations corresponding to physical frailty and nursing home residence among aging individuals. A gut-muscle axis through which the microbiome influences skeletal muscle growth/function has been hypothesized. However, the microbiome has yet to be examined in sarcopenia. Here, we collected fecal samples of 60 healthy controls (CON) and 27 sarcopenic (Case)/possibly sarcopenic (preCase) individua