https://www.selleckchem.com/products/hg106.html Targeting the mitochondrial pyruvate carrier promotes alanine oxidation to mitigate deoxysphingolipid synthesis and improve spheroid growth, similar to phenotypes observed with the direct inhibition of SPT or ceramide synthesis. Restriction of dietary serine and glycine potently induces the accumulation of deoxysphingolipids while decreasing tumour growth in xenograft models in mice. Pharmacological inhibition of SPT rescues xenograft growth in mice fed diets restricted in serine and glycine, and the reduction of circulating serine by inhibition of phosphoglycerate dehydrogenase (PHGDH) leads to the accumulation of deoxysphingolipids and mitigates tumour growth. The promiscuity of SPT therefore links serine and mitochondrial alanine metabolism to membrane lipid diversity, which further sensitizes tumours to metabolic stress.Locust plagues threaten agricultural and environmental safety throughout the world1,2. Aggregation pheromones have a crucial role in the transition of locusts from a solitary form to the devastating gregarious form and the formation of large-scale swarms3,4. However, none of the candidate compounds reported5-7 meet all the criteria for a locust aggregation pheromone. Here, using behavioural assays, electrophysiological recording, olfactory receptor characterization and field experiments, we demonstrate that 4-vinylanisole (4VA) (also known as 4-methoxystyrene) is an aggregation pheromone of the migratory locust (Locusta migratoria). Both gregarious and solitary locusts are strongly attracted to 4VA, regardless of age and sex. Although it is emitted specifically by gregarious locusts, 4VA production can be triggered by aggregation of four to five solitary locusts. It elicits responses specifically from basiconic sensilla on locust antennae. We also identified OR35 as a specific olfactory receptor of 4VA. Knockout of OR35 using CRISPR-Cas9 markedly reduced the electrophysiological responses of the ant