Allergen-challenge in mice lead to significant increase in airway inflammation, development of airway hyperresponsiveness (AHR) and increase in mucus and airway wall thickening (hallmark features of allergic asthma). Allergic asthma features were significantly enhanced in offspring from eCig (+Nicotine)-exposed mothers and were mainly reliant upon Th2-dependent inflammation with complementary changes in mitochondrial homeostasis. Further, in vitro data demonstrated that eCig (±Nicotine)-exposure impaired airway cell homeostasis and perturbed mitochondrial function. Collectively, maternal eCig vaping enhanced and worsened features of allergic asthma and this could partly be attributed to aberrant mitochondrial function.Prenatal smoke exposure is a risk factor for impaired lung development in children. Recent studies have indicated that amphiregulin (AREG), which is a ligand of the epidermal growth factor receptor (EGFR), has a regulatory role in airway epithelial cell differentiation. In this study, we investigated the effect of prenatal smoke exposure on lung epithelial cell differentiation and linked this with AREG-EGFR signaling in 1-day-old mouse offspring. Bronchial and alveolar epithelial cell differentiations were assessed by immunohistochemistry. Areg, epidermal growth factor (Egf), and mRNA expressions of specific markers for bronchial and alveolar epithelial cells were assessed by RT-qPCR. https://www.selleckchem.com/products/lenalidomide-s1029.html The results in neonatal lungs were validated in an AREG-treated three-dimensional mouse lung organoid model. We found that prenatal smoke exposure reduced the number of ciliated cells and the expression of the cilia-related transcription factor Foxj1, whereas it resulted in higher expression of mucus-related transcription factors Spdef and Foxm1 in the lung. Moreover, prenatally smoke-exposed offspring had higher numbers of alveolar epithelial type II cells (AECII) and lower expression of the AECI-related Pdpn and Gramd2 markers. This was accompanied by higher expression of Areg and lower expression of Egf in prenatally smoke-exposed offspring. In bronchial organoids, AREG treatment resulted in fewer ciliated cells and more basal cells when compared with non-treated bronchiolar organoids. In alveolar organoids, AREG treatment led to more AECII cells than non-treated AECII cells. Taken together, the observed impaired bronchial and alveolar cell development in prenatally smoke-exposed neonatal offspring may be induced by increased AREG-EGFR signaling.A new form of severe acute respiratory syndrome (SARS) caused by SARS-coronavirus 2 (CoV-2), called COVID-19, has become a global threat in 2020. The mortality rate from COVID-19 is high in hypertensive patients, making this association especially dangerous. There appears to be a consensus, despite the lack of experimental data, that angiotensin II (ANG II) is linked to the pathogenesis of COVID-19. This process may occur due to acquired deficiency of angiotensin-converting enzyme 2 (ACE2), resulting in reduced degradation of ANG II. Furthermore, ANG II has a critical role in the genesis and worsening of hypertension. In this context, the idea that there is a surge in the level of ANG II with COVID-19 infection, causing multiple organ injuries in hypertensive patients becomes attractive. However, the role of other components of the renin angiotensin system (RAS) in this scenario requires elucidation. The identification of other RAS components in COVID-19 hypertension may provide both diagnostic and therapeutic benefits. Here, we summarize the pathophysiologic contributions of different components of RAS in hypertension and their possible correlation with poor outcome observed in hypertensive patients with COVID-19.Management of musculoskeletal (MSK) tumours has traditionally been delivered by surgeons and medical oncologists. However, in recent years, image-guided interventional oncology (IO) has significantly impacted the clinical management of MSK tumours. With the rapid evolution of relevant technologies and the expanding range of clinical indications, it is likely that the impact of IO will significantly grow and further evolve in the near future.In this narrative review, we describe well-established and new interventional technologies that are currently integrating into the IO armamentarium available to radiologists to treat MSK tumours and illustrate new emerging IO indications for treatment.The past two decades have witnessed a resurgence in neutrophil research, inspired in part by the discovery of neutrophil extracellular traps (NETs) and their myriad roles in health and disease. Within the lung, dysregulation of neutrophils and NETosis have been linked to an array of diseases including pneumonia, cystic fibrosis, acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and severe asthma. However, our understanding of pathologic neutrophil responses in the lung remains incomplete. Two methodologic issues have contributed to this gap first, an emphasis on studying neutrophils from blood rather than the lung and second, the technical difficulties of interrogating neutrophil responses in mice, which has largely restricted basic murine research to specialized laboratories. To address these limitations, we have developed a suite of techniques for studying neutrophil effector functions specifically in the mouse lung. These include ex vivo assays for phagocytosis and NETosis using bronchoalveolar neutrophils and in situ evaluation of NETosis in a murine model of pneumonia. Throughout, we have prioritized technical ease and robust, quantitative readouts. We hope these assays will help to standardize research on lung neutrophils and improve accessibility to this burgeoning field.Many mouse models of allergic asthma exhibit eosinophil-predominant cellularity rather than the mixed-granulocytic cytology in steroid-unresponsive severe disease. Therefore, we sought to implement a novel mouse model of antigen-driven, mixed-granulocytic, severe allergic asthma to determine biomarkers of the disease process and potential therapeutic targets. C57BL/6J wild-type, interleukin-6 knockout (IL-6-/-), and IL-6 receptor knockout (IL-6R-/-), mice were injected with an emulsion of complete Freund's adjuvant and house dust mite antigen (CFA/HDM) on day 1. Dexamethasone, a lymphocyte-depleting biological, or anti-IL-17A was administered during the intranasal HDM challenge on days 19-22. On day 23, the CFA/HDM model elicited mixed bronchoalveolar lavage (BAL) cellularity (typically 80% neutrophils and 10% eosinophils), airway hyperresponsiveness (AHR) to methacholine, diffusion impairment, lung damage, body weight loss, corticosteroid resistance, and elevated levels of serum amyloid A (SAA), pro-inflammatory cytokines, and T helper type 1/ T helper type 17 (Th1/Th17) cytokines compared with eosinophilic models of HDM-driven allergic airway disease.