Reliable tools to evaluate diet are needed, particularly in life periods such as adolescence in which a rapid rate of growth and development occurs. We assessed the biochemical validity of a self-administered food frequency questionnaire (FFQ) in a sample of Spanish male adolescents using carotenoids and vitamin E and D data. We analyzed data from 122 male adolescents aged 15-17 years of the INMA-Granada birth cohort study. Adolescents answered a 104-item FFQ and provided a non-fasting blood sample. Mean daily nutrient intakes and serum concentration were estimated for main carotenoids (lutein-zeaxanthin, β-cryptoxanthin, lycopene, α-carotene and β-carotene), vitamins E and D and also for fruit and vegetable intake. Pearson correlation coefficients (r) and the percentage of agreement (same or adjacent quintiles) between serum vitamin concentrations and energy-adjusted intakes were estimated. Statistically significant correlation coefficients were observed for the total carotenoids (r = 0.40) and specific carotenoids, with the highest correlation observed for lutein-zeaxanthin (r = 0.42) and the lowest for β-carotene (0.23). The correlation coefficient between fruit and vegetable intake and serum carotenoids was 0.29 (higher for vegetable intake, r = 0.33 than for fruit intake, r = 0.19). Low correlations were observed for vitamin E and D. The average percentage of agreement for carotenoids was 55.8%, and lower for vitamin E and D (50% and 41%, respectively). The FFQ may be an acceptable tool for dietary assessment among male adolescents in Spain.The Paeonia emodi (P. emodi)-mediated iron oxide nanoparticles (Fe2O3 NPs) were screened for in-vitro and in-vivo antibacterial activity against the Staphylococcus aureus (S. aureus) (ATCC # 6538) and Escherichia coli (E. coli) (ATCC #15224). The synthesized Fe2O3 NPs were characterized via nitrogen adsorption-desorption process, X-ray diffractometer (XRD), transmission and scanning electron microscopies (TEM and SEM), energy dispersive X-ray (EDX) and Fourier transform infrared (FTIR) spectroscopies. The SBET was found to be 94.65 m2/g with pore size of 2.99 nm, whereas the average crystallite and particles size are 23 and 27.64 nm, respectively. The 4 μg/mL is the MIC that inhibits the growth of E. coli, whereas those for S. aureus are below the detection limit ( less then 1.76 μg/mL). The tolerance limit of the mice model was inspected by injecting different concentration of Fe2O3 NPs and bacteria suspensions. The 14 ppm suspension was the tolerated dose and the concentration above were proved lethal. The most severe infection was induced in mice with injection of 3 × 107 CFUs of both bacteria, while the inoculation of higher concentrations of bacterial suspensions resulted in the mice's death. The histopathological and hematological studies reveals that the no/negligible infection was found in the mice exposed to the simultaneous inoculation of Fe2O3 NPs (14 ppm) and bacterial suspensions (3 × 107 CFUs).Random fluctuations in neuronal processes may contribute to variability in perception and increase the information capacity of neuronal networks. Various sources of random processes have been characterized in the nervous system on different levels. However, in the context of neural correlates of consciousness, the robustness of mechanisms of conscious perception against inherent noise in neural dynamical systems is poorly understood. In this paper, a stochastic model is developed to study the implications of noise on dynamical systems that mimic neural correlates of consciousness. We computed power spectral densities and spectral entropy values for dynamical systems that contain a number of mutually connected processes. https://www.selleckchem.com/products/thapsigargin.html Interestingly, we found that spectral entropy decreases linearly as the number of processes within the system doubles. Further, power spectral density frequencies shift to higher values as system size increases, revealing an increasing impact of negative feedback loops and regulations on the dynamics of larger systems. Overall, our stochastic modeling and analysis results reveal that large dynamical systems of mutually connected and negatively regulated processes are more robust against inherent noise than small systems.Skeletal disorders, including fractures and osteoporosis, in laying hens cause major welfare and economic problems. Although genetics have been shown to play a key role in bone integrity, little is yet known about the underlying genetic architecture of the traits. This study aimed to identify genes associated with bone breaking strength and bone mineral density of the tibiotarsus and the humerus in laying hens. Potentially informative single nucleotide polymorphisms (SNP) were identified using Random Forests classification. We then searched for genes known to be related to bone stability in close proximity to the SNPs and identified 16 potential candidates. Some of them had human orthologues. Based on our findings, we can support the assumption that multiple genes determine bone strength, with each of them having a rather small effect, as illustrated by our SNP effect estimates. Furthermore, the enrichment analysis showed that some of these candidates are involved in metabolic pathways critical for bone integrity. In conclusion, the identified candidates represent genes that may play a role in the bone integrity of chickens. Although further studies are needed to determine causality, the genes reported here are promising in terms of alleviating bone disorders in laying hens.Melampsora larici-populina causes serious poplar foliar diseases called rust worldwide. Salicylic acid (SA) and jasmonic acid (JA) are important phytohormones that are related to plant defence responses. To investigate the transcriptome profiles of SA- and JA-related genes involved in poplar rust interaction, two tolerant poplars and one intolerant poplar were selected for this study. Weighted gene coexpression network analysis (WGCNA) was applied to characterize the changes in the transcriptome profiles and contents of SA and JA after infection with the virulent E4 race of M. larici-populina. In response to infection with the E4 race of M. larici-populina, tolerant symptoms were correlated with the expression of genes related to SA and JA biosynthesis, the levels of SA and JA, and the expression of defence-related genes downstream of SA and JA. Tolerant poplars could promptly regulate the occurrence of defence responses by activating or inhibiting SA or JA pathways in a timely manner, including regulating the expression of genes related to programmed cell death, such as Kunitz-type trypsin inhibitor (KTI), to limit the growth of E4 and protect themselves.