417 ± 7 g, P less then 0.05) and caloric intake (162 ± 20 vs. 192 ± 9 kcal/kg of body wt, P less then 0.05) compared with males, and leptin infusion reduced BW (-10%) and caloric intake (-62%) similarly in both sexes. In rats with streptozotocin-induced diabetes (n = 5/sex), intracerebroventricular leptin treatment for 7 days completely normalized glucose levels. The same dose of leptin administered intraperitoneally did not alter MAP, HR, glucose levels, or caloric intake in normal or diabetic rats. These results show that leptin's CNS effects on BP, HR, glucose regulation, and energy homeostasis are similar in male and female rats. Therefore, our results provide no evidence for sex differences in leptin's brain-mediated cardiovascular or metabolic actions. Highly automated vehicles may permit alternative seating postures, which could alter occupant kinematics and challenge current restraint designs. One predicted posture is a reclined seated position. While the spine of upright occupants is subjected to flexion during frontal crashes, the orientation of reclined occupants tends to subject the spine to high compressive loads followed by high flexion loads. This study aims to investigate kinematics and mechanisms of loading in the thoracolumbar spine for a reclined seated posture through the use of postmortem human subjects (PMHS). Frontal impact sled tests (50 kph delta-v) were conducted on five adult midsize male PMHS seated with the torso reclined to 50 degrees with respect to the vertical. The PMHS were seated on a semi-rigid seat and restrained by a seat-integrated three-point belt with dual lap-belt pretensioners and a shoulder-belt pretensioner with a 3 kN load-limiter. 3-D kinematic trajectories of five chosen vertebrae, and the pelvis were measured r posture of the spine (magnitude of lordosis or kyphosis) and pelvis (pitch angle). To our knowledge, this study is the first to analyze thoracolumbar kinematics and resulting injuries of a reclined seating posture using PMHS. Anterior rotation of the pelvis caused increased extension of the lumbar spine, which exacerbated lumbar compression in two of the PMHS; the one subject whose pelvis kinematic tracking was lost exhibited similar compression kinematics. Posterior rotation of the pelvis enabled lumbar flexion, which decreased lumbar compression, but lead to lap-belt submarining in one case. Lumbar kinematics for these reclined frontal impacts were sensitive to changes in initial posture of the spine (magnitude of lordosis or kyphosis) and pelvis (pitch angle). To our knowledge, this study is the first to analyze thoracolumbar kinematics and resulting injuries of a reclined seating posture using PMHS. Crashes involving drinking drivers represent as much as one-third of all fatal crashes around the world. Progress has been made in reducing this toll through a series of interventions that attempt to discourage driving while intoxicated (DWI) and reoffending among drivers who have been convicted of DWI. However, these approaches cannot eliminate the problem. In-vehicle technologies are being developed, such as the Driver Alcohol Detection System for Safety-commonly referred to as DADSS-that have the potential to prevent alcohol-impaired drivers from driving their vehicles. DADSS in-vehicle sensors are designed to quickly detect whether drivers have been drinking and accurately and precisely measure blood or breath alcohol concentration. If the driver's alcohol concentration measures at or above a set limit, the vehicle will be prevented from moving. The DADSS technology is expected to be ready for real-world applications in the next few years. The implementation of this technology in vehicles promises to t its life-saving potential can be realized both in the United States and in other countries that may be open to the implementation of DADSS. Traditionally, structured or coded data fields from a crash report are the basis for identifying crashes involving different types of vehicles, such as farm equipment. However, using only the structured data can lead to misclassification of vehicle or crash type. The objective of the current article is to examine the use of machine learning methods for identifying agricultural crashes based on the crash narrative and to transfer the application of models to different settings (e.g., future years of data, other states). Different data representations (e.g., bag-of-words [BoW], bag-of-keywords [BoK]) and document classification algorithms (e.g., support vector machine [SVM], multinomial naïve Bayes classifier [MNB]) were explored using Texas and Louisiana crash narratives across different time periods. The BoK-support vector classifier (SVC), BoK-MNB, and BoW-SVC models trained with Texas data were better predictive models than the baseline rule-based algorithm on the future year test data, with F1 scores of 0.88, 0.89, 0.85 vs. 0.84. The BoK-MNB trained with Louisiana data performed the closest to the baseline rule-based algorithm on the future year test data (F1 scores, 0.91 baseline rule-based algorithm vs. 0.89 BoK-MNB). The BoK-SVC and BoK-MNB models trained with Texas and Louisiana data were better productive models for Texas future year test data with F1 scores 0.89 and 0.90 vs. 0.84. https://www.selleckchem.com/products/adenine-sulfate.html The BoK-MNB model trained with both states' data was a better predictive model for the Louisiana future year test data, F1 score 0.94 vs. 0.91. The findings of this study support that machine learning methodologies can potentially reduce the amount of human power required to develop key word lists and manually review narratives. The findings of this study support that machine learning methodologies can potentially reduce the amount of human power required to develop key word lists and manually review narratives.Gastric vagal afferents (GVAs) sense food-related mechanical stimuli and signal to the central nervous system, to integrate control of meal termination. Pregnancy is characterized by increased maternal food intake, which is essential for normal fetal growth and to maximize progeny survival and health. However, it is unknown whether GVA function is altered during pregnancy to promote food intake. This study aimed to determine the mechanosensitivity of GVAs and food intake during early, mid-, and late stages of pregnancy in mice. Pregnant mice consumed more food compared with nonpregnant mice, notably in the light phase during mid- and late pregnancy. The increased food intake was predominantly due to light-phase increases in meal size across all stages of pregnancy. The sensitivity of GVA tension receptors to gastric distension was significantly attenuated in mid- and late pregnancy, whereas the sensitivity of GVA mucosal receptors to mucosal stroking was unchanged during pregnancy. To determine whether pregnancy-associated hormonal changes drive these adaptations, the effects of estradiol, progesterone, prolactin, and growth hormone on GVA tension receptor mechanosensitivity were determined in nonpregnant female mice.