https://www.selleckchem.com/products/Staurosporine.html Additionally, during the reconstruction of HRRP, the target velocity is estimated via joint constraint of entropy minimization and sparseness of HRRP to compensate the high order phase error brought by the target velocity to concentrate HRRP. Experimental results based on both simulated and measured data validate the effectiveness of the proposed Bayesian HRRP reconstruction algorithm.Semantic segmentation is a key step in scene understanding for autonomous driving. Although deep learning has significantly improved the segmentation accuracy, current highquality models such as PSPNet and DeepLabV3 are inefficient given their complex architectures and reliance on multi-scale inputs. Thus, it is difficult to apply them to real-time or practical applications. On the other hand, existing real-time methods cannot yet produce satisfactory results on small objects such as traffic lights, which are imperative to safe autonomous driving. In this paper, we improve the performance of real-time semantic segmentation from two perspectives, methodology and data. Specifically, we propose a real-time segmentation model coined Narrow Deep Network (NDNet) and build a synthetic dataset by inserting additional small objects into the training images. The proposed method achieves 65.7% mean intersection over union (mIoU) on the Cityscapes test set with only 8.4G floatingpoint operations (FLOPs) on 1024×2048 inputs. Furthermore, by re-training the existing PSPNet and DeepLabV3 models on our synthetic dataset, we obtained an average 2% mIoU improvement on small objects.In recent years, hashing methods have been proved to be effective and efficient for large-scale Web media search. However, the existing general hashing methods have limited discriminative power for describing fine-grained objects that share similar overall appearance but have a subtle difference. To solve this problem, we for the first time introduce the attention mechan