https://www.selleckchem.com/products/Celastrol.html Chaos appears widely in various chemical and physical systems and is often accompanied by nonequilibrium due to its dissipative nature. However, it is still not clear how dissipative chaos is influenced by nonequilibrium conditions. Here, we study chaos from the perspective of nonequilibrium dynamics by considering a chemical Lorenz system. We found that its nonequilibrium nature can be quantified from the steady-state probability flux in the state space. The dynamic origin for the onset and offset of dissipative chaos was from the sudden appearance and disappearance of such nonequilibrium fluxes. Meanwhile, the dissipation associated with the flux as quantified by the entropy production rate provides the thermodynamic origin of dissipative chaos. Sharp changes in the degree of nonequilibrium also provide alternative quantitative indicators for the onset and offset of dissipative chaos.We previously reported that a tris-(o-phenylenediamine) iron(ii) complex promotes photochemical H2 generation and C-H carboxylation of o-phenylenediamine without any additives under N2 and CO2 atmospheres, respectively, in tetrahydrofuran at room temperature. Herein, the key mechanistic process, namely, excited-state hydrogen detachment from the o-phenylendiamine moiety, is demonstrated under an N2 atmosphere.A common feature of intrinsically disordered proteins (IDPs) is a disorder-to-order transition upon binding to other proteins, which has been tied to multiple benefits, including accelerated association rates or binding with low affinity, yet high specificity. Given the balanced equilibrium concentrations of folded and unfolded state of an IDP we asked the question if changes in the chemical environment, such as the presence of osmolytes or crowding agents, have a strong influence on the interaction of an IDP. Here, we demonstrate the impact of cosolutes on the interaction of the intrinsically disordered transcription factor c-M