https://www.selleckchem.com/products/bms-986278.html NF-κB essential modulator (NEMO) is a key regulatory protein that functions during NF-κB- and interferon-mediated signaling in response to extracellular stimuli and pathogen infections. Tight regulation of NEMO is essential for host innate immune responses and for maintenance of homeostasis. Here, we report that the E3 ligase MARCH2 is a novel negative regulator of NEMO-mediated signaling upon bacterial or viral infection. MARCH2 interacted directly with NEMO during the late phase of infection and catalyzed K-48-linked ubiquitination of Lys326 on NEMO, which resulted in its degradation. Deletion of MARCH2 resulted in marked resistance to bacterial/viral infection, along with increased innate immune responses both in vitro and in vivo. In addition, MARCH2-/- mice were more susceptible to LPS challenge due to massive production of cytokines. Taken together, these findings provide new insight into the molecular regulation of NEMO and suggest an important role for MARCH2 in homeostatic control of innate immune responses.Invited for the cover of this issue is Ulrich Schwaneberg and co-workers at RWTH Aachen University and DWI Leibniz-Institut für Interaktive Materialien. The image depicts a loop engineered, and backbone cyclized Staphylococcus aureus sortase A which shows enhanced robustness in site-specific protein and peptide modifications. Read the full text of the article at 10.1002/chem.202002740.Octopus protein hydrolysate has been reported to increase milk yield and milk protein production. In this paper, the utilization and underlying mechanisms of bioactive peptide fractions from octopus protein hydrolysate on β-casein expression in mouse mammary epithelial cells (HC11) were investigated. Fraction OPH3-1 significantly stimulated cell proliferation and β-casein synthesis in HC11 cells, which was purified by ultra-filtration and gel-filtration chromatography. The MWs of the peptides from OPH3-1 ranged from 525-2