https://www.selleckchem.com/screening/fda-approved-drug-library.html A facile method was developed to produce porous alginate beads (PABs) with a controllable interconnected porous structure with aqueous two phase (ATPS) emulsions as template for 3D cell culture. ATPS emulsions, containing two biocompatible immiscible aqueous phases of cell/dextran (Dex) mixture and alginate (Alg)/polyethylene glycol (PEG) mixture and stabilized by mPEG-BSA particles, were introduced to form PABs. The pore size of PABs could be controlled by changing the emulsification frequency and the volume ratio between the ATPS emulsions and PEG-Alg solution. Moreover, cells could be directly encapsulated in the interconnected pores due to the excellent biocompatibility of ATPS. HeLa and human liver cancer cells encapsulated in the PABs present stronger cell activity (>95 %), proliferation, and enhanced functions compared with the cells encapsulated in general alginate beads (GABs). It is believed that the PABs is a promising microcarriers for 3D cell culture in vitro.Sea urchin possesses both high nutritional and medicinal value. It contains diverse biological active polysaccharides. But there are few studies on its glycogen. In the current study, a glucan (MSGA) was separated from Strongylocentyotus internedius and purified by ion exchange and gel filtration column. Chemical analysis revealed that MSGA with 2.65 × 107 Da is made up entirely of glucose. The analysis of methylation, NMR and mass spectrum demonstrated that MSGA is a highly branched glycogen with α-(1→4) linked gluconic backbone and branched at C-6 (one branch per five residues). In addition, MSGA showed good in vitro immunostimulatory activity via NF-κB and MAPKs pathways. It is considered that high degree of branching is necessary for its activity. However, the relationship between structure and immunostimulatory activity of natural glycogens is difficult to elucidate because the difference in their structural properties. There