Typically, half of the nitrogen (N) fertiliser applied to agricultural fields is lost to the wider environment. This inefficiency is driven by soil processes such as denitrification, volatilisation, surface run-off and leaching. Rainfall plays an important role in regulating these processes, ultimately governing when and where N fertiliser moves in soil and its susceptibility to gaseous loss. The interaction between rainfall, plant N uptake and N losses, however, remains poorly understood. In this study we use numerical modelling to predict the optimal N fertilisation strategy with respect to rainfall patterns and offer mechanistic explanations to the resultant differences in optimal times of fertiliser application. We developed a modelling framework that describes water and N transport in soil over a growing season and assesses nitrogen use efficiency (NUE) of split fertilisations within the context of different rainfall patterns. We used ninety rainfall patterns to determine their impact on optimal N fertilatterns.The value of mangroves has been widely acknowledged, but mangrove forests continue to decline due to numerous anthropogenic stressors. The impact of plastic waste is however poorly known, even though the amount of plastic litter is the largest in the region where mangroves are declining the fastest South East Asia. In this study, we examine the extent of the plastic waste problem in mangroves along the north coast of Java, Indonesia. First, we investigate how much of the forest floor is covered by plastic in the field (in number of items per m2 and in percentage of the forest floor covered by plastic), and if plastic is also buried in the upper layers of the sediment. We then experimentally investigate the effects of a range of plastic cover percentages (0%, 50% and 100%) on root growth, stress response of the tree and tree survival over a period of six weeks. Field monitoring showed that plastic was abundant, with 27 plastic items per m2 on average, covering up to 50% of the forest floor at multiple locations. Moreover, core data revealed that plastic was frequently buried in the upper layers of the sediment where it becomes immobile and can create prolonged anoxic conditions. Our experiment subsequently revealed that prolonged suffocation by plastic caused immediate pneumatophore growth and potential leaf loss. However, trees in the 50%-plastic cover treatment proved surprisingly resilient and were able to maintain their canopy over the course of the experiment, whereas trees in the 100%-plastic cover treatment had a significantly decreased leaf area index and survival by the end of the experiment. Our findings demonstrate that mangrove trees are relatively resilient to partial burial by plastic waste. However, mangrove stands are likely to deteriorate eventually if plastic continues to accumulate.Previous studies have provided evidence that bioremediation deals a novel approach to graffiti removal, thereby overcoming well-known limitations of current cleaning methods. In the present study eight bacteria aerobic, mesophilic and culturable from the American ATCC and the German DSMZ collections of microorganisms, some isolated from car paint waste, colored deposits in a pulp dryer and wastewater from dye works, were tested in the removal of silver and black graffiti spray paints using immersion strategies with glass slides. Absorbance at 600 nm and live/dead assays were performed to estimate bacterial density and activity in all samples. Also, pH and dissolved organic carbon (DOC) and inorganic carbon (DIC) measurements in the liquid media were made, as well as, thickness, colorimetric and infrared (FTIR) spectroscopy measurements in graffiti paint layers were used to evaluate the presence of the selected bacteria in the samples and the graffiti bioremoval capacity of bacteria. Data demonstrated that of the eight bacteria studied, Enterobacter aerogenes, Comamonas sp. and a mixture of Bacillus sp., Delftia lacustris, Sphingobacterium caeni, and Ochrobactrum anthropi were the most promising for bioremoval of graffiti. According to significant changes in FTIR spectra, indicating an alteration of the paint polymeric structure, coupled with the presence of a consistent quantity of live bacteria in the medium as well as a significant increase of DIC (a measure of metabolic activity) and a change in paint color.Volcanism is a potentially important natural source of mercury (Hg) to the environment. However, its impact on the global Hg cycle remains poorly understood despite advances over the last five decades. This represents a major uncertainty in our understanding of the relative contributions of natural and anthropogenic Hg sources to the global atmosphere. This uncertainty, in turn, impacts evaluation of the effectiveness of policies to mitigate the impact of anthropogenic Hg on the environment. Here we critically review recent progress in volcanic Hg emission research, including advances in sampling methods and understanding of the post-emission behavior of Hg in the atmosphere. Our statistical analysis of the limited available data shows that the plumes of non-arc volcanoes exhibit significantly higher Hg concentrations than arc volcanoes, yet the latter emit 3-fold higher Hg fluxes on average. Arc volcanism also dominates volcanic gas emissions globally, indicating that arc volcanoes should be a priority for future Hg emission research. https://www.selleckchem.com/products/gw4869.html We explore several methodological challenges that continue to hinder progress in quantifying global volcanic Hg emissions, and discuss the importance of longer time-frame data collection to capture temporal variations in emissions. Recommendations are proposed for working toward a more accurate assessment of the global volcanic Hg flux. A detailed summary of all published volcanic Hg emissions data worldwide is also presented as a reference tool for future work.Carbon deposition usually hinders catalytic activity in one catalysis. In this work, carbon-deposition influence was investigated on selective catalytic reduction (SCR) of nitric oxide (NO) by a theoretical-experimental method. Density-functional-theory calculations showed that carbon deposition increased adsorption energy of NO on oxide. For example, adsorption energy on Fe2O3 increased from 1.70 to 5.27 eV. Carbon deposition increased activity by following processes NO adsorption, NO dissociation, oxygen transmittance, CO-group formation, and N2/CO2 evolutions. Among these stages, CO-group formation was a key step. Based on these computational predictions, an experimental SCR was carried out for the verification. As a result, a carbon-deposited catalyst had a better SCR activity (20% higher) than the corresponding oxide catalyst. Characterizations showed that carbon deposition increased the amounts of medium/strong acidic sites as well as the reducibility of the catalytic center. The main result of this article helps to understand the interface behavior of carbon on a catalyst during SCR.