https://www.selleckchem.com/products/crt-0105446.html The vasoconstriction of blood vessels in the DSWC model after V-PDT is directly quantified, which can avoid by the potential of generating new capillaries. The accuracy, sensitivity and specificity of the U-Net model for image segmentation are 90.64%, 80.12% and 92.83%, respectively. A significant difference in vasoconstriction between a control and a V-PDT group was observed. This new automatic protocol is well suitable for quantifying vasoconstriction in blood vessel image, which holds the potential application in V-PDT studies. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.We demonstrate large scale polarization contrast optical diffraction tomography (ODT). In cross-polarized sample arm detection configuration we determine, from the amplitude of the optical wavefield, a relative measure of the birefringence projection. In parallel-polarized sample arm detection configuration we image the conventional phase projection. For off-axis sample placement we observe for polarization contrast ODT, similar as for phase contrast ODT, a strongly reduced noise contribution. In the limit of small birefringence phase shift δ we demonstrate tomographic reconstruction of polarization contrast images into a full 3D image of an optically cleared zebrafish. The polarization contrast ODT reconstruction shows muscular zebrafish tissue, which cannot be visualized in conventional phase contrast ODT. Polarization contrast ODT images of the zebrafish show a much higher signal to noise ratio (SNR) than the corresponding phase contrast images, SNR=73 and SNR=15, respectively. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.Wide-field fluorescence microscopy, while much faster than confocal microscopy, suffers from a lack of optical sectioning and poor axial resolution. 3D structured illumination microscopy (SIM) has been demonstrated to provide