A full atom-economical domino method has been developed for the preparation of alkyl 5-amino-4-cyano-1H-pyrrole-2-carboxylates by transannulation of 5-alkoxyisoxazoles with malononitrile under Fe(ii) catalysis. Alkyl 5-amino-4-cyano-1H-pyrrole-2-carboxylates are excellent building blocks for various annulation reactions, leading to new derivatives of 1H-pyrrolo[1,2-a]imidazole and pyrrolo[2,3-d]pyrimidine. The DFT calculations of mechanistic details of alkyl 5-amino-4-cyano-1H-pyrrole-2-carboxylate formation are presented.Aqueous electrochemical energy storage systems (AEESS) are considered as the most promising energy storage devices for large-scale energy storage. AEESSs, including batteries and supercapacitors, have received extensive attention due to their low cost, eco-friendliness, and high safety. However, the insufficient energy densities of the state-of-the-art AEESSs limit their practical applications which are mainly dominated by the electrochemical performances of individual electrode materials. Understanding the underlying relationship between structures, reaction mechanisms, and performances can further lead to the design and optimization of structures of the electrodes instructively, thereby harvesting favorable performances. This review classified the intrinsic logic of structure-mechanism-performance by taking some prevailing mechanisms with some classical structures of materials as examples. Moreover, some problem-oriented structural engineering strategies are proposed aiming to optimize their performance. Finally, comprehensive structural design engineering and some suggestions for fine modifications of electrode materials at the atomic and molecular levels are proposed to combine the advantages of supercapacitor- and battery-type materials for designing excellent electrode materials for AEESSs.We present the first investigation of excited state dynamics by resonant Auger-Meitner spectroscopy (also known as resonant Auger spectroscopy) using the nucleobase thymine as an example. Thymine is photoexcited in the UV and probed with X-ray photon energies at and below the oxygen K-edge. After initial photoexcitation to a ππ* excited state, thymine is known to undergo internal conversion to an nπ* excited state with a strong resonance at the oxygen K-edge, red-shifted from the ground state π* resonances of thymine (see our previous study Wolf, et al., Nat. Commun., 2017, 8, 29). We resolve and compare the Auger-Meitner electron spectra associated both with the excited state and ground state resonances, and distinguish participator and spectator decay contributions. Furthermore, we observe simultaneously with the decay of the nπ* state signatures the appearance of additional resonant Auger-Meitner contributions at photon energies between the nπ* state and the ground state resonances. We assign these contributions to population transfer from the nπ* state to a ππ* triplet state via intersystem crossing on the picosecond timescale based on simulations of the X-ray absorption spectra in the vibrationally hot triplet state. Moreover, we identify signatures from the initially excited ππ* singlet state which we have not observed in our previous study.The present study was designed to explore the beneficial mitochondrial effects and anti-oxidative activities of plant sterol ester of α-linolenic acid (PS-ALA) through AMP-activated protein kinase (AMPK) signaling in the treatment of nonalcoholic fatty liver disease (NAFLD) using in vivo and in vitro models. The mitochondrial function was evaluated and the oxidative stress index was measured. The protein expression was analyzed by immunohistochemical, immunofluorescence, and western blotting methods. The results showed that PS-ALA significantly suppressed NAFLD and alleviated steatosis in HepG2 cells induced by oleic acid (OA). In addition, PS-ALA promoted mitochondrial biogenesis, enhanced mitochondrial fatty acid oxidation capacity, improved mitochondrial dynamics, and restored mitochondrial membrane potential. Moreover, PS-ALA reduced reactive oxygen species production both in the liver tissue of HFD-fed mice and OA-loaded HepG2 cells. At the molecular level, PS-ALA accelerated the phosphorylation of AMPK and increased the protein expression of peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α) and nuclear NF-E2-related factor 2 (Nrf2). Furthermore, the stimulating effects of PS-ALA on the PGC-1α/Nrf1/Tfam pathway and Nrf2/HO-1 pathway as well as its mitochondrial biogenesis promotion effects and anti-oxidative activities were abrogated by the AMPK inhibitor in OA-treated HepG2 cells. In conclusion, the protective effects of PS-ALA on NAFLD appear to be associated with improving mitochondrial function and oxidative stress via activating AMPK signaling.We describe a study of the binding of anions to the surface of an octanuclear coordination cage HW, which carries a 16+ charge, in aqueous solution. Anionic aromatic fluorophores such as fluorescein (and derivatives) and hydroxypyrene tris-sulfonate (HPTS) bind strongly to an extent depending on their charge and hydrophobicity. Job plots indicated binding of up to six such fluorescent anions to HW, implying that one anion can bind to each face of the cubic cage, as previously demonstrated crystallographically with small anions such as halides. The quenching of these fluorophores on association with the cage provides the basis of a fluorescence displacement assay to investigate binding of other anions addition of analyte (organic or inorganic) anions in titration experiments to an HW/fluorescein combination results in displacement and restoration of the fluorescence from the bound fluorescein, allowing calculation of 1  1 binding constants for the HW/anion combinations. https://www.selleckchem.com/products/aticaprant.html Relative binding affinities of simple anions for the cage surface can be approximately rationalised on the basis of ease of desolvation (e.g. F- less then Cl- less then Br-), electrostatic factors given the 16+ charge on the cage (monoanions less then dianions), and extent of hydrophobic surface. The interaction of a di-anionic pH indicator (bromocresol purple) with HW results in a pKa shift, with the surface-bound di-anionic form stabilised by approximately 1 pKa unit compared to the non-bound neutral form due to the charge on the cage.