We assessed risk of bias using QUADAS-2. RESULTS We included 32 articles (representing 31 studies) that evaluated various identification strategies, including three screening tools (SPUTOVAMO checklist, Escape instrument, and a 6-item screening questionnaire for child sex trafficking). No studies evaluated the effects of identification strategies on important outcomes for children. All studies were rated as having serious risk of bias (often because of verification bias). The findings suggest that use of the SPUTOVAMO and Escape screening tools at the population level (per 100,000) would result in hundreds of children being missed and thousands of children being over identified. CONCLUSIONS There is low to very low certainty evidence that the use of screening tools may result in high numbers of children being falsely suspected or missed. These harms may outweigh the potential benefits of using such tools in practice (PROSPERO 2016CRD42016039659).BACKGROUND Self-regulation (SR), or the capacity to control one's thoughts, emotions, and behaviors in order to achieve a desired goal, shapes health outcomes through many pathways, including supporting adherence to medical treatment regimens. Type 1 Diabetes (T1D) is one specific condition that requires SR to ensure adherence to daily treatment regimens that can be arduous and effortful (e.g., monitoring blood glucose). Adolescents, in particular, have poor adherence to T1D treatment regimens, yet it is essential that they assume increased responsibility for managing their T1D as they approach young adulthood. Adolescence is also a time of rapid changes in SR capacity and thus a compelling period for intervention. Promoting SR among adolescents with T1D may thus be a novel method to improve treatment regimen adherence. The current study tests a behavioral intervention to enhance SR among adolescents with T1D. SR and T1D medical regimen adherence will be examined as primary and secondary outcomes, respectivelimen adherence outcomes than the control group. https://www.selleckchem.com/products/chir-98014.html DISCUSSION If successful, SR-focused behavioral interventions could improve health outcomes among adolescents with T1D and have transdiagnostic implications across multiple chronic conditions requiring treatment regimen adherence. TRIAL REGISTRATION ClinicalTrials.gov NCT03688919; registered September 28, 2018.BACKGROUND MicroRNAs (miRNAs) regulate adipose tissue development, which are closely related to subcutaneous and intramuscular fat deposition and adipocyte differentiation. As an important economic and agricultural animal, rabbits have low adipose tissue deposition and are an ideal model to study adipose regulation. However, the miRNAs related to fat deposition during the growth and development of rabbits are poorly defined. METHODS In this study, miRNA-sequencing and bioinformatics analyses were used to profile the miRNAs in rabbit perirenal adipose tissue at 35, 85 and 120 days post-birth. Differentially expressed (DE) miRNAs between different stages were identified by DEseq in R. Target genes of DE miRNAs were predicted by TargetScan and miRanda. To explore the functions of identified miRNAs, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. RESULTS Approximately 1.6 GB of data was obtained by miRNA-seq. A total of 987 miRNAs (780 known and 207 newly predicted) and 174 DE miRNAs were identified. The miRNAs ranged from 18 nt to 26 nt. GO enrichment and KEGG pathway analyses revealed that the target genes of the DE miRNAs were mainly involved in zinc ion binding, regulation of cell growth, MAPK signaling pathway, and other adipose hypertrophy-related pathways. Six DE miRNAs were randomly selected, and their expression profiles were validated by q-PCR. CONCLUSIONS This is the first report of the miRNA profiles of adipose tissue during different growth stages of rabbits. Our data provide a theoretical reference for subsequent studies on rabbit genetics, breeding and the regulatory mechanisms of adipose development.BACKGROUND Intranasal dexmedetomidine (DEX), as a novel sedation method, has been used in many clinical examinations of infants and children. However, the safety and efficacy of this method for electroencephalography (EEG) in children is limited. In this study, we performed a large-scale clinical case analysis of patients who received this sedation method. The purpose of this study was to evaluate the safety and efficacy of intranasal DEX for sedation in children during EEG. METHODS This was a retrospective study. The inclusion criteria were children who underwent EEG from October 2016 to October 2018 at the Children's Hospital affiliated with Chongqing Medical University. All the children received 2.5 μg·kg- 1 of intranasal DEX for sedation during the procedure. We used the Modified Observer Assessment of Alertness/Sedation Scale (MOAA/S) and the Modified Aldrete score (MAS) to evaluate the effects of the treatment on sedation and resuscitation. The sex, age, weight, American Society of Anesthesiologists physical status (ASAPS), vital signs, sedation onset and recovery times, sedation success rate, and adverse patient events were recorded. RESULTS A total of 3475 cases were collected and analysed in this study. The success rate of the initial dose was 87.0% (3024/3475 cases), and the success rate of intranasal sedation rescue was 60.8% (274/451 cases). The median sedation onset time was 19 mins (IQR 17-22 min), and the sedation recovery time was 41 mins (IQR 36-47 min). The total incidence of adverse events was 0.95% (33/3475 cases), and no serious adverse events occurred. CONCLUSIONS Intranasal DEX (2.5 μg·kg- 1) can be safely and effectively used for EEG sedation in children.Two-point mutations (V419L and L925I) on the voltage-sensitive sodium channel of bed bugs (Cimex lectularius) are known to confer pyrethroid resistance. To determine the status of pyrethroid resistance in bed bugs in Korea, resistance allele frequencies of bed bug strains collected from several US military installations in Korea and Mokpo, Jeollanamdo, from 2009-2019 were monitored using a quantitative sequencing. Most bed bugs were determined to have both of the point mutations except a few specimens, collected in 2009, 2012 and 2014, having only a single point mutation (L925I). No susceptible allele was observed in any of the bed bugs examined, suggesting that pyrethroid resistance in bed bug populations in Korea has reached a serious level. Large scale monitoring is required to increase our knowledge on the distribution and prevalence of pyrethroid resistance in bed bug populations in Korea. Based on present study, it is urgent to restrict the use of pyrethroids and to introduce effective alternative insecticides.