https://www.selleckchem.com/products/gdc-0994.html Accurate and automated detection of anomalous samples in an image dataset can be accomplished with a probabilistic model. Such images have heterogeneous complexity, however, and a probabilistic model tends to overlook simply shaped objects with small anomalies. The reason is that a probabilistic model assigns undesirable lower likelihoods to complexly shaped objects, which are nevertheless consistent with the current set standards. This difficulty is critical, especially for a defect detection task, where the anomaly can be a small scratch or grime. To overcome this difficulty, we propose an unregularized score for deep generative models (DGMs). We found that the regularization terms of the DGMs considerably influence the anomaly score depending on the complexity of the samples. By removing these terms, we obtain an unregularized score, which we evaluated on toy datasets, two in-house manufacturing datasets, and on open manufacturing and medical datasets. The empirical results demonstrate that the unregularized score is robust to the apparent complexity of given samples and detects anomalies selectively.Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all views to learn a common Hamming space, thus making it difficult to handle the data with increasing views or a large number of views. To overcome these difficulties, we propose a decoupled CVH network (DCHN) approach which consists of a semantic hashing autoencoder module (SHAM) and multiple multiview hashing networks (MHNs). To be specific, SHAM adopts a hashing encoder and decoder to learn a discriminative Hamming space using either a few labels or the number of classes, that is, the so-called flexible inputs. After that, MHN independently projects all samples into the discriminative Hamming space that is treated as an alter