1T-phase transition-metal dichalcogenides (TMDs) nanomaterials are one type of emerging and promising near-infrared II (NIR-II) photothermal agents (PTAs) derived from their distinct metallic electronic structure, but it is still challenging to synthesize these nanomaterials. Herein, PdTe2 nanoparticles (PTNs) with a 1T crystal symmetry and around 50 nm in size are prepared by an electrochemical exfoliation method, and the corresponding photothermal performances irradiated under a NIR-II laser have been explored. The encapsulation of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) endows PTNs with water solubility, enhanced photothermal stability, and high biocompatibility. Notably, PTN/DSPE-PEG displays a potent absorbance through the NIR-II zone and considerable photothermal conversion efficiency, which is up to 68% when irradiated with a 1060 nm laser. With these unique photothermal properties, excellent in vitro and in vivo tumor inhibition effects of PTN/DSPE-PEG have been achieved under the irradiation of a NIR-II (1060 nm) laser without visible toxicity to normal tissues, suggesting that it is an efficient NIR-II photothermal nanoagent.Neurodegenerative diseases are associated with failed proteostasis and accumulation of insoluble protein aggregates that compromise neuronal function and survival. In Parkinson's disease, a major pathological finding is Lewy bodies and neurites that are mainly composed of phosphorylated and aggregated α-synuclein and fragments of organelle membranes. Here, we analyzed a series of selective inhibitors acting on multidomain proteins CBP and p300 that contain both lysine acetyltransferase and bromodomains and are responsible for the recognition and enzymatic modification of lysine residues. By using high-affinity inhibitors, A-485, GNE-049, and SGC-CBP30, we explored the role of two closely related proteins, CBP and p300, as promising targets for selective attenuation of α-synuclein aggregation. Our data show that selective CBP/p300 inhibitors may alter the course of pathological α-synuclein accumulation in primary mouse embryonic dopaminergic neurons. Hence, drug-like CBP/p300 inhibitors provide an effective approach for the development of high-affinity drug candidates preventing α-synuclein aggregation via systemic administration.Anhydroexfoliamycin, a secondary metabolite from Streptomyces, has shown antioxidant properties in primary cortical neurons reducing neurodegenerative hallmarks diseases, both in vitro and in vivo models. Activated microglia, in the central nervous system, plays a crucial role in neuroinflammation and is associated with neurodegeneration. Therefore, the aim of the present study was to determine the anti-inflammatory and antioxidant potential of the anhydroexfoliamycin over microglia BV2 cells. Neuroinflammation was simulated by incubation of microglia cells in the presence of lipopolysaccharide to activate proinflammatory transduction pathways. Moreover, a coculture of neuron SH-SY5Y and microglia BV2 cells was used to evaluate the neuroprotective properties of the Streptomyces metabolite. When microglia cells were preincubated with anhydroexfoliamycin, proinflammatory pathways, such as the translocation of the nuclear factor κB, the phosphorylation of c-Jun N-terminal kinase, and the inducible nitric oxide synthase expression, were inhibited. In addition, intracellular reactive oxygen species generation and the liberation of nitric oxide, interleukin 6, and tumor necrosis factor α were also decreased. Besides, the Streptomyces-derived compound showed antioxidant properties promoting the translocation of the factor erythroid 2-related factor 2 and protecting the SH-SY5Y cells from the neurotoxic mediators released by activated microglia. The effects of this compound were at the same level as the immunosuppressive drug cyclosporine A. https://www.selleckchem.com/products/proxalutamide-gt0918.html Therefore, these results indicate that anhydroexfoliamycin is a promising tool to control microglia-driven inflammation with therapeutic potential in neuroinflammation.Water-in-oil emulsion droplet microfluidic systems have been extensively developed, and currently, almost all cell handling steps can be conducted in this format. An exception is the cell washing and solution exchange step, which is commonly utilized in many conventional cell assays. This paper presents an in-droplet cell washing and solution exchange technology that utilizes dielectrophoretic (DEP) force to move all cells to one side of a droplet, followed by asymmetrical splitting of the droplet to obtain a small daughter droplet that contains all or most of the cells, and then finally merges this cell-concentrated droplet with a new droplet that contains the desired solution. These sequential droplet manipulation steps were integrated into a single platform, where up to 88% of the original solution in the droplet could be exchanged with the new solution while keeping cell loss to less than 5%. Two application examples were demonstrated using the developed technology. In the first example, green microalga Chlamydomonas reinhardtii cells were manipulated using negative DEP force to exchange the regular culture medium with a nitrogen-limited medium to induce lipid production. In the second example, Salmonella enterica cells were manipulated using positive DEP force to replace fluorescent dye that models fluorescent cell stains that contribute to high background noise in fluorescence-based droplet content detection with fresh buffer solution, significantly improving the droplet content detection sensitivity. Since the cell washing step is one of the most frequently utilized steps in many cell biology assays, we expect that the developed technology can significantly broaden the type of assay that can be conducted in droplet microfluidic format.Dielectric ceramics are crucial for high-temperature, pulse-power energy storage applications. However, the mutual restriction between the polarization and breakdown strength has been a significant challenge. Here, multiphase engineering controlled by the two-step sintering heating rate is adopted to simultaneously obtain a high polarization and breakdown strength in 0.8(0.95Bi0.5Na0.5TiO3-0.05SrZrO3)-0.2NaNbO3 (BNTSZNN) ceramic systems. The coexistence of tetragonal (T) and rhombohedral (R) phases benefits the temperature stability of BNTSZNN ceramics. Increasing the heating rate during sintering reduces the diffusion of SrZrO3 and NaNbO3 into Bi0.5Na0.5TiO3, which results in a high proportion of the R phase and a finer grain size. The overall polarization is enhanced by increasing the proportion of the high-polarization R phase, which is demonstrated using a first-principles method. Meanwhile, the finer grain size enhances the breakdown strength. Following this design philosophy, an ultrahigh Wdis of 5.55 J/cm3 and η above 85% is achieved in BNTSZNN ceramics as prepared with a fast heating rate of 60 °C/min given a simultaneously high polarization of 43 μC/cm2 and high breakdown strength of 350 kV/cm.