https://www.selleckchem.com/products/brusatol.html Furthermore, by adjusting the size of the WGM microcavity structure naturally formed by the hexagonal MWs, particularly by adjusting the diameter of the wires, the exciton-polariton coupling strength in the single MW based LEDs can be tuned, with the as-extracted Rabi splitting energy varying in the range of 92-294 meV. The realization of a single MW based LED, which shows exciton-polariton behavior from a built-in optical microresonator, can enable a promising route for the future fabrication of polariton emitters, where the device performance no longer suffers from obstacles including the need for additional optical resonators, large lattice mismatch, and template availability.Recently, phototherapy has attracted much attention due to its negligible invasiveness, insignificant toxicity and excellent applicability. The construction of a newly proposed nanosystem with synergistic photothermal and photodynamic tumor-eliminating properties requires a delicate structure design. In this work, a novel therapeutic nanoplatform (denoted as BCS-Ce6) based on defective cobalt hydroxide nanosheets was developed, which realized hypoxia-relieved photothermal-enhanced photodynamic therapy against cancer. Defective cobalt hydroxide exhibited high photothermal conversion efficacy at the near-infrared region (49.49% at 808 nm) as well as enhanced catalase-like activity to produce oxygen and greatly boost the singlet oxygen generation by a photosensitizer, Ce6, realizing efficacious dual-modal phototherapy. In vivo and in vitro experiments revealed that BCS-Ce6 can almost completely extinguish implanted tumors in a mouse model and present satisfactory biocompatibility during the treatment. This work sets a new angle of preparing photothermal agents and constructing comprehensive therapeutic nanosystems with the ability to modulate the hypoxic tumor microenvironment for efficient cancer therapy.Caffeic acid (CA), a derivative of cinn