https://www.selleckchem.com/products/tvb-2640.html Human dental pulp stem cells (hDPSCs) are some of the most promising stem cell types for regenerative therapies given their ability to grow in the absence of serum and their realistic possibility to be used in autologous grafts. In this review, we describe the particular advantages of hDPSCs for neuroregenerative cell therapies. We thoroughly discuss the knowledge about their embryonic origin and characteristics of their postnatal niche, as well as the current status of cell culture protocols to maximize their multilineage differentiation potential, highlighting some common issues when assessing neuronal differentiation fates of hDPSCs. We also review the recent progress on neuroprotective and immunomodulatory capacity of hDPSCs and their secreted extracellular vesicles, as well as their combination with scaffold materials to improve their functional integration on the injured central nervous system (CNS) and peripheral nervous system (PNS). Finally, we offer some perspectives on the current and possible future applications of hDPSCs in neuroregenerative cell therapies.Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders whose pathogenesis seems to be related to an imbalance of excitatory and inhibitory synapses, which leads to disrupted connectivity during brain development. Among the various biomarkers that have been evaluated in the last years, metabolic factors represent a bridge between genetic vulnerability and environmental aspects. In particular, cholesterol homeostasis and circulating fatty acids seem to be involved in the pathogenesis of ASDs, both through the contribute in the stabilization of cell membranes and the modulation of inflammatory factors. The purpose of the present review is to summarize the available data about the role of cholesterol and fatty acids, mainly long-chain ones, in the onset of ASDs. A bibliographic research on the main databases was performed and 36 stud