https://www.selleckchem.com/products/sr-18292.html N-doped carbons were obtained from bamboo shoot shell via hydrothermal pretreatment under salt assistance followed by carbonization, using melamine as nitrogen source. The carbons with tubular morphology and surface areas in 406-489 m2/g range were used as adsorbents for the removal of methyl orange (MO) and rhodamine B (RhB). Adsorption isotherms and kinetic fitting showed much better accordance with Freundlich model and pseudo-second-order, showing balanced capacity (qe) of 50 mg/g for MO and 42 mg/g for RhB on the pristine carbons (BHC-800) at 25 °C. After N-doping treatment, carbons (BSC-M20) had qe of MO and RhB up to 140 and 100 mg/g, respectively, confirming a positive effect of N-doping on the enhancement of dyes removal. The findings indicated that hydrothermal treatment followed by carbonization was efficient to obtain N-doped carbons from biomass materials, and the present BSS-derived carbons were promising adsorbents for organic dyes removal from water. Economic assessment of bio-flocculant production process has been carried out by SuperPro Designer where extracellular-polymeric substances (EPS) were produced using activated sludge fortified with crude glycerol in fermenter followed by centrifugation. Considering EPS concentration of 60 g/L in production fermenter at 96 h, the unit production cost for slime EPS was estimated to be $ 0.95/L. The unit price of S-EPS was sensitive to inoculum size and EPS productivity (EPS concentration and fermentation time) in the fermented broth. Economic analysis was also conducted for EPS aided leachate treatment. The unit leachate treatment cost was 7.78 $/m3 and was sensitive to S-EPS unit production cost. To get same leachate treatment cost as current industrial practice (4 $/m3), S-EPS unit production cost should lower down to $ 0.5/L. The process has several advantages 1) sludge and crude glycerol valorization for bio-flocculant production 2) Leachate treatment u