We report the first characterization of the aerosol brown carbon (BrC) composition in the Indian context using excitation emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor (PARAFAC) analysis. We find that biomass burning (BB)-dominated wintertime aerosols in the Indo-Gangetic Plain (IGP) outflow are characterized by two humic-like (HULIS) (C1_aq and C2_aq) and one protein-like/fossil fuel-derived (C3_aq) component for aqueous-extractable BrC (BrCaq), and by one humic-like (C1_me) and one protein-like (C2_me) component for methanol-extractable BrC (BrCme). Strong correlations of the BB tracer nss-K+ with C1_aq and C2_aq (r = 0.75-0.84, p less then 0.01) and C1_me (r = 0.77, p less then 0.01) point towards the BB-dominated IGP outflow as the major source. This is also supported by the analysis of fluorescence indices, which suggest extensive humification of BB emissions during atmospheric transport. The HULIS components correlate significantly with BrC absorption (r = 0.85-0.94, p less then 0.01), and contribute substantially to the BrC relative radiative forcing of 13-24% vis-à-vis elemental carbon (EC). There is strong evidence that the abundant BB-derived NOX leads to NO3- formation in the IGP plume and drives the formation of water-soluble nitroaromatics (NACs) that constrain BrCaq light absorption (r = 0.56, p less then 0.01) to a considerable degree. Overall, the study uncovers complex atmospheric processing of the IGP outflow in winter, which has important implications for regional climate.Water systems often contain complex macromolecular systems that absorb light. In marine environments, these light absorbing components are often at the air-water interface and can participate in the chemistry of the atmosphere in ways that are poorly understood. Understanding the photochemistry and photophysics of these systems represents a major challenge since their composition and structures are not unique. In this study, we present a successful microscopic model of this light absorbing macromolecular species termed "marine derived chromophoric dissolved organic matter" or "m-CDOM" in water. The approach taken involves molecular dynamics simulations in the ground state using on the fly Density Functional Tight-Binding (DFTB) electronic structure theory; Time Dependent DFTB (TD-DFTB) calculations of excited states, and experimental measurements of the optical absorption spectra in aqueous solution. The theoretical hydrated model shows key features seen in the experimental data for a collected m-CDOM sample. As will be discussed, insights from the model are (i) the low-energy A-band (at 410 nm) is due to the carbon chains combined with the diol- and the oxy-groups present in the structure; (ii) the weak B-band (at 320-360 nm) appears due to the contribution of the ionized speciated form of m-CDOM; and (iii) the higher-energy C-band (at 280 nm) is due to the two fused ring system. Thus, this is a two-speciated formed model. Although a relatively simple system, these calculations represent an important step in understanding light absorbing compounds found in nature and the search for other microscopic models of related materials remains of major interest.Ti-Pd alloy catalysts were developed for the cross β-arylmethylation between arylmethylalcohols and different primary alcohols via a hydrogen autotransfer mechanism. The alloy catalysts could be reused multiple times without the need for pre-activation. Analysis of the reaction solution by inductively coupled plasma atomic absorption spectroscopy indicated that only a minimal amount of Ti and no Pd was leached from the catalyst.We report a Many Body Energy (MBE) analysis of aqueous ionic clusters containing anions and cations at the two opposite ends of the Hofmeister series, viz. the kosmotropes Ca2+ and SO42- and the chaotropes NH4+ and ClO4-, with 9 water molecules to quantify how these ions alter the interaction between the water molecules in their immediate surroundings. We specifically aim at quantifying how various ions (depending on their position in the Hofmeister series) affect the interaction between the surrounding water molecules and probe whether there is a qualitatively different behavior between kosmotropic vs. chaotropic ions. The current results when compared to the ones reported earlier for water clusters [J. P. Heindel and S. S. Xantheas, J. Chem. Theor. Comput., 2020, 16, 6843-6855] as well as for alkali metal and halide ion aqueous clusters of the same size [J. P. Heindel and S. S. Xantheas, J. Chem. https://www.selleckchem.com/products/oxythiamine-chloride-hydrochloride.html Theor. Comput., 2021, 17, 2200-2216], which lie in the middle of the Hofmeister series, offer a complete accountd for the corresponding dimer energies and distances, a single profile fits the current results together with all previously reported ones for pure water and halide water clusters. This finding lends further support to schemes for accurately estimating the 2-B BSSE correction in condensed environments.Owing to its novel electronic and magnetic properties, two-dimensional CrI3 has great potential in the application of spintronic devices. However, as an inevitable line defect, the properties of the edges of CrI3 remain elusive. Here, via first-principles calculations with spin-orbit coupling, we investigated the thermodynamic stabilities, electronic and magnetic properties of thirteen CrI3 edges with different structures. We showed that zigzag edges are more stable than armchair edges, and a CrI3 nanoribbon can be either metallic or insulating depending on its chemical growth conditions. The edge stability and associated electronic properties can be understood in terms of the octahedron ligand field and electron counting model. In most cases, both the magnetic moment and Curie temperature can be enhanced by edges, which are in startle contrast to the surfaces of three-dimensional ferromagnetic materials, where a magnetic dead layer is often observed.It is accepted that biomimetic supply of signaling molecules during bone regeneration can provide an appropriate environment for accelerated new bone formation. In this study, we developed a growth factor delivery system based on porous particles and a thermosensitive hydrogel that allowed fast, continuous, and delayed/continuous release of growth factors to mimic their biological production during bone regeneration. It was observed that the Continuous group (continuous release of growth factors) provides a better environment for the osteogenic differentiation of hPDCs than the Biomimetic group (biomimetic release of growth factors), and thus is anticipated to promote bone regeneration. However, contrary to expectation, the Biomimetic group promoted significant new bone formation compared to the Continuous group. From the systematic cell culture experiments, the initial supply of VEGF was considered to have more favorable effects on the osteoclastogenesis than osteogenesis, which may hinder bone regeneration.