https://www.selleckchem.com/products/h-1152-dihydrochloride.html 8-11.2 GHz) and exhibit a very high efficiency over than 90%, but only with the thickness of 1 mm (0.028 λ). Our device can help to solve the issues of absorption at large angles, and it can find wide applications in large antenna array design and other communication systems.Periodic guided-mode resonance structures which provide perfect reflection across sizeable spectral bandwidths have been known for decades and are now often referred to as metasurfaces and metamaterials. Although the underlying physics for these devices is explained by evanescent-wave excitation of leaky Bloch modes, a growing body of literature contends that local particle resonance is causative in perfect reflection. Here, we address differentiation of Mie resonance and guided-mode resonance in mediating resonant reflection by periodic particle assemblies. We treat a classic 2D periodic array consisting of silicon spheres. To disable Mie resonance, we apply an optimal antireflection (AR) coating to the spheres. Reflectance maps for coated and uncoated spheres demonstrate that perfect reflection persists in both cases. It is shown that the Mie scattering efficiency of an AR-coated sphere is greatly diminished. The reflectance properties of AR-coated spherical arrays have not appeared in the literature previously. From this viewpoint, these results illustrate high-efficiency resonance reflection in Mie-resonance-quenched particle arrays and may help dispel misconceptions of the basic operational physics.Ultrathin hybrid organic-inorganic perovskite (HOIP) films have significant potential for use in integrated high-performance photoelectric devices. However, the relatively low optical absorption capabilities of thinner films, particularly in the long-wavelength region, pose a significant challenge to the further improvement of photoelectrical conversion in ultrathin HOIP films. To address this problem, we propose a combining of ultr