https://www.selleckchem.com/products/mek162.html The recent availability of small and low-cost sensor carrying unmanned aerial systems (UAS, commonly known as drones) coupled with advances in image processing software (i.e., structure from motion photogrammetry) has made drone-collected imagery a potentially valuable tool for rangeland inventory and monitoring. Drone-imagery methods can observe larger extents to estimate indicators at landscape scales with higher confidence than traditional field sampling. They also have the potential to replace field methods in some instances and enable the development of indicators not measurable from the ground. Much research has already demonstrated that several quantitative rangeland indicators can be estimated from high-resolution imagery. Developing a suite of monitoring methods that are useful for supporting management decisions (e.g., repeatable, cost-effective, and validated against field methods) will require additional exploration to develop best practices for image acquisition and analytical workflows that can replace most field methods in large monitoring programs, they could be a valuable enhancement for pressing local management needs.There is considerable evidence that animals are able to discriminate between quantities. Despite the fact that quantitative skills have been extensively studied in adult individuals, research on their development in early life is restricted to a limited number of species. We, therefore, investigated whether 2-month-old puppies could spontaneously discriminate between different quantities of food items. We used a simultaneous two-choice task in which puppies were presented with three numerical combinations of pieces of food (1 vs. 8, 1 vs. 6 and 1 vs. 4), and they were allowed to select only one option. The subjects chose the larger of the two quantities in the 1 vs. 8 and the 1 vs. 6 combinations but not in the 1 vs. 4 combination. Furthermore, the last quantity the puppies looked at be