Two crucial recommendations from the analysis of the state of knowledge and potential ways forward are one, the formulation of integrative mega-projects, which span the multi-stakeholder spectrum, to ensure rapid success in harnessing the transformative power of photosynthesis and two, stipulating spatio-temporal, labour and economic criteria to stage-gate deliverables. © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology.AIMS Aortic valve stenosis is commonly considered a degenerative disorder with no recommended preventive intervention, with only valve replacement surgery or catheter intervention as treatment options. https://www.selleckchem.com/products/chir-98014.html We sought to assess the causal association between exposure to lipid levels and risk of aortic stenosis. METHODS AND RESULTS Causality of association was assessed using two-sample Mendelian randomization framework through different statistical methods. We retrieved summary estimations of 157 genetic variants that have been shown to be associated with plasma lipid levels in the Global Lipids Genetics Consortium that included 188 577 participants, mostly European ancestry, and genetic association with aortic stenosis as the main outcome from a total of 432 173 participants in the UK Biobank. Secondary negative control outcomes included aortic regurgitation and mitral regurgitation. The odds ratio for developing aortic stenosis per unit increase in lipid parameter was 1.52 [95% confidence interval (CI) 1.22-1.90; per 0.98 mmol/L] for low density lipoprotein (LDL)-cholesterol, 1.03 (95% CI 0.80-1.31; per 0.41 mmol/L) for high density lipoprotein (HDL)-cholesterol, and 1.38 (95% CI 0.92-2.07; per 1 mmol/L) for triglycerides. There was no evidence of a causal association between any of the lipid parameters and aortic or mitral regurgitation. CONCLUSION Lifelong exposure to high LDL-cholesterol increases the risk of symptomatic aortic stenosis, suggesting that LDL-lowering treatment may be effective in its prevention. © The Author(s) 2020. Published by Oxford University Press on behalf of the European Society of Cardiology.A succinct strategy was demonstrated for constructing a hydroxyl group and imidazolium-bifunctionalized ionic network via a one-pot quaternization. Key to success lies in the rational design of multi-imidazole precursor and hydroxyl-containing counterpart. Unique properties of the resultant ionic network render its high catalytic efficiency toward CO2 fixation under ambient conditions.Lipid lamellar hydrogels are rare soft fluids composed of a phospholipid lamellar phase instead of fibrillar networks. The mechanical properties of these materials are controlled by defects, induced by local accumulation of a polymer or surfactant in a classical lipid bilayer. Herein we report a new class of lipid lamellar hydrogels composed of one single bolaform glycosylated lipid obtained by fermentation. The lipid is self-organized into flat interdigitated membranes, stabilized by electrostatic repulsive forces and stacked in micrometer-sized lamellar domains. The defects in the membranes and the interconnection of the lamellar domains are responsible, from the nano- to the micrometer scales, for the elastic properties of the hydrogels. The lamellar structure is probed by combining small angle X-ray and neutron scattering (SAXS, SANS), the defect-rich lamellar domains are visualized by polarized light microscopy while the elastic properties are studied by oscillatory rheology. The latter show that both storage G' and loss G'' moduli scale as a weak power-law of the frequency, that can be fitted with fractional rheology models. The hydrogels possess rheo-thinning properties with second-scale recovery. We also show that ionic strength is not only necessary, as one could expect, to control the interactions in the lamellar phase but, most importantly, it directly controls the elastic properties of the lamellar gels.The present study compares the effect of two types of vinegars, Balsamic vinegar of Modena (BV) and Chinese Shanxi vinegar (SV), with acetic acid on plasma cholesterol using hamsters as a model. Hamsters (n = 40) were divided into five groups (n = 8 each) with two control groups being fed a low-cholesterol diet (LCD) or a high-cholesterol diet containing 0.2% cholesterol (HCD). The three experimental groups were given a HCD diet and gavaged with 8 ml of BV, SV, and acetic acid solution (AC) per kg body weight, respectively. Acetic acid in BV, SV, and AC solutions was adjusted with water to be 20 mg ml-1. The whole experiment lasted for 9 weeks. Plasma total cholesterol (TC) in BV and SV groups but not in the AC group was reduced by 17% and 20%, respectively, compared with that in HCD hamsters. BV and SV significantly reduced cholesterol in the liver and increased the fecal excretion of neutral sterols and bile acids. Real-time PCR analysis demonstrated that BV and SV significantly up-regulated the mRNA of cholesterol 7 alpha-hydroxylase (CYP7A1) in the liver. In conclusion, BV and SV but not AC were effective in reducing plasma TC and non-HDL-C concentrations at least in hypercholesterolemic hamsters.Omega-3 (ω-3) polyunsaturated fatty acids are highly susceptible to oxidation and have an intense odour and poor water solubility, which make their direct applications in foods extremely difficult. In order to reduce their oxidation process and improve their stability in aqueous medium, protein-based nanoemulsions were produced and characterized. Lactoferrin (Lf) was used as an emulsifier at different concentrations (0.2% to 4% w/w). High energy methods (Ultra-Turrax and high-pressure homogenizer) were applied to produce Lf-based nanoemulsions with ω-3 PUFAs encapsulated. The nanoemulsions were characterized in terms of physical and chemical stability at 4 and 25 °C. The results obtained revealed that the Lf concentration influences the nanoemulsion size in a manner that higher Lf concentrations decrease the nanoemulsion size. It was also observed that the nanoemulsions are physically stable when stored at 4 °C for 69 days while at 25 °C they showed instability. The radical scavenging capacity of the nanoemulsions did not show significant changes over storage at 4 and 25 °C while a significant increase in oxidation was observed.